Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jorn Trommelen is active.

Publication


Featured researches published by Jorn Trommelen.


International Journal of Sport Nutrition and Exercise Metabolism | 2017

Dietary Protein Intake and Distribution Patterns of Well-Trained Dutch Athletes

Jenna B. Gillen; Jorn Trommelen; Floris C. Wardenaar; Naomi Y.J. Brinkmans; Joline J. Versteegen; Kristin L. Jonvik; Christoph Kapp; Jeanne H.M. de Vries; Joost Jgc van den Borne; Martin J. Gibala; Luc J. C. van Loon

Dietary protein intake should be optimized in all athletes to ensure proper recovery and enhance the skeletal muscle adaptive response to exercise training. In addition to total protein intake, the use of specific proteincontaining food sources and the distribution of protein throughout the day are relevant for optimizing protein intake in athletes. In the present study, we examined the daily intake and distribution of various proteincontaining food sources in a large cohort of strength, endurance and team-sport athletes. Well-trained male (n=327) and female (n=226) athletes completed multiple web-based 24-hr dietary recalls over a 2-4 wk period. Total energy intake, the contribution of animal- and plant-based proteins to daily protein intake, and protein intake at six eating moments were determined. Daily protein intake averaged 108±33 and 90±24 g in men and women, respectively, which corresponded to relative intakes of 1.5±0.4 and 1.4±0.4 g/kg. Dietary protein intake was correlated with total energy intake in strength (r=0.71, p <.001), endurance (r=0.79, p <.001) and team-sport (r=0.77, p <.001) athletes. Animal and plant-based sources of protein intake was 57% and 43%, respectively. The distribution of protein intake was 19% (19±8 g) at breakfast, 24% (25±13 g) at lunch and 38% (38±15 g) at dinner. Protein intake was below the recommended 20 g for 58% of athletes at breakfast, 36% at lunch and 8% at dinner. In summary, this survey of athletes revealed they habitually consume > 1.2 g protein/kg/d, but the distribution throughout the day may be suboptimal to maximize the skeletal muscle adaptive response to training.


Journal of Nutrition | 2016

Physical Activity Performed in the Evening Increases the Overnight Muscle Protein Synthetic Response to Presleep Protein Ingestion in Older Men

Andrew M. Holwerda; Imre W. K. Kouw; Jorn Trommelen; Shona L. Halson; Will K. W. H. Wodzig; Lex B. Verdijk; Luc J. C. van Loon

BACKGROUND The age-related decline in skeletal muscle mass is partly attributed to anabolic resistance to food intake. Dietary protein ingestion before sleep could be used as a nutritional strategy to compensate for anabolic resistance. OBJECTIVE The present study assessed whether physical activity performed in the evening can augment the overnight muscle protein synthetic response to presleep protein ingestion in older men. METHODS In a parallel group design, 23 healthy older men (mean ± SEM age: 71 ± 1 y) were randomly assigned to ingest 40 g protein intrinsically labeled with l-[1-(13)C]-phenylalanine and l-[1-(13)C]-leucine before going to sleep with (PRO+EX) or without (PRO) performing physical activity earlier in the evening. Overnight protein digestion and absorption kinetics and myofibrillar protein synthesis rates were assessed by combining primed, continuous infusions of l-[ring-(2)H5]-phenylalanine, l-[1-(13)C]-leucine, and l-[ring-(2)H2]-tyrosine with the ingestion of intrinsically labeled casein protein. Muscle and blood samples were collected throughout overnight sleep. RESULTS Protein ingested before sleep was normally digested and absorbed, with 54% ± 2% of the protein-derived amino acids appearing in the circulation throughout overnight sleep. Overnight myofibrillar protein synthesis rates were 31% (0.058% ± 0.002%/h compared with 0.044% ± 0.003%/h; P < 0.01; based on l-[ring-(2)H5]-phenylalanine) and 27% (0.074% ± 0.004%/h compared with 0.058% ± 0.003%/h; P < 0.01; based on l-[1-(13)C]-leucine) higher in the PRO+EX than in the PRO treatment. More dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO+EX than in PRO treatment (0.042 ± 0.002 compared with 0.033 ± 0.002 mole percent excess; P < 0.05). CONCLUSIONS Physical activity performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo muscle protein synthesis during overnight sleep in older men. This trial was registered at Nederlands Trial Register as NTR3885.


Nutrients | 2016

Pre-Sleep Protein Ingestion to Improve the Skeletal Muscle Adaptive Response to Exercise Training

Jorn Trommelen; Luc J. C. van Loon

Protein ingestion following resistance-type exercise stimulates muscle protein synthesis rates, and enhances the skeletal muscle adaptive response to prolonged resistance-type exercise training. As the adaptive response to a single bout of resistance exercise extends well beyond the first couple of hours of post-exercise recovery, recent studies have begun to investigate the impact of the timing and distribution of protein ingestion during more prolonged recovery periods. Recent work has shown that overnight muscle protein synthesis rates are restricted by the level of amino acid availability. Protein ingested prior to sleep is effectively digested and absorbed, and thereby stimulates muscle protein synthesis rates during overnight recovery. When applied during a prolonged period of resistance-type exercise training, protein supplementation prior to sleep can further augment gains in muscle mass and strength. Recent studies investigating the impact of pre-sleep protein ingestion suggest that at least 40 g of protein is required to display a robust increase in muscle protein synthesis rates throughout overnight sleep. Furthermore, prior exercise allows more of the pre-sleep protein-derived amino acids to be utilized for de novo muscle protein synthesis during sleep. In short, pre-sleep protein ingestion represents an effective dietary strategy to improve overnight muscle protein synthesis, thereby improving the skeletal muscle adaptive response to exercise training.


Medicine and Science in Sports and Exercise | 2016

Resistance Exercise Augments Postprandial Overnight Muscle Protein Synthesis Rates

Jorn Trommelen; Andrew M. Holwerda; Imre W. K. Kouw; Henning T. Langer; Shona L. Halson; Ian Rollo; Lex B. Verdijk; Luc J. C. van Loon

INTRODUCTION We have previously shown that protein ingestion before sleep increases overnight muscle protein synthesis rates. Whether prior exercise further augments the muscle protein synthetic response to presleep protein ingestion remains to be established. OBJECTIVE This study aimed to assess whether resistance-type exercise performed in the evening increases the overnight muscle protein synthetic response to presleep protein ingestion. METHODS Twenty-four healthy young men were randomly assigned to ingest 30 g intrinsically L-[1-C]-phenylalanine and L-[1-C]-leucine-labeled casein protein before going to sleep with (PRO + EX, n = 12) or without (PRO, n = 12) prior resistance-type exercise performed in the evening. Continuous intravenous L-[ring-H5]-phenylalanine, L-[1-C]-leucine, and L-[ring-H2]-tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole-body protein balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into de novo myofibrillar protein. RESULTS A total of 57% ± 1% of the ingested protein-derived phenylalanine appeared in the circulation during overnight sleep. Overnight myofibrillar protein synthesis rates were 37% (0.055%·h ± 0.002%·h vs. 0.040%·h ± 0.003%·h, P < 0.001, based on L-[ring- H5]-phenylalanine) and 31% (0.073%·h ± 0.004%·h vs. 0.055%·h ± 0.006%·h, P = 0.024, based on L-[1-C]-leucine) higher in PRO + EX compared with PRO. Substantially more of the dietary protein-derived amino acids were incorporated into de novo myofibrillar protein during overnight sleep in PRO + EX compared with PRO (0.026 ± 0.003 vs. 0.015 ± 0.003 molar percent excess, P = 0.012). CONCLUSIONS Resistance-type exercise performed in the evening augments the overnight muscle protein synthetic response to presleep protein ingestion and allows more of the ingested protein-derived amino acids to be used for de novo myofibrillar protein synthesis during overnight sleep.


European Journal of Endocrinology | 2015

MECHANISMS IN ENDOCRINOLOGY: Exogenous insulin does not increase muscle protein synthesis rate when administered systemically: a systematic review

Jorn Trommelen; Bart B. L. Groen; Henrike M. Hamer; Lisette C. P. G. M. de Groot; Luc J. C. van Loon

BACKGROUND Though it is well appreciated that insulin plays an important role in the regulation of muscle protein metabolism, there is much discrepancy in the literature on the capacity of exogenous insulin administration to increase muscle protein synthesis rates in vivo in humans. OBJECTIVE To assess whether exogenous insulin administration increases muscle protein synthesis rates in young and older adults. DESIGN A systematic review of clinical trials was performed and the presence or absence of an increase in muscle protein synthesis rate was reported for each individual study arm. In a stepwise manner, multiple models were constructed that excluded study arms based on the following conditions: model 1, concurrent hyperaminoacidemia; model 2, insulin-induced hypoaminoacidemia; model 3, supraphysiological insulin concentrations; and model 4, older, more insulin resistant, subjects. CONCLUSIONS From the presented data in the current systematic review, we conclude that: i) exogenous insulin and amino acid administration effectively increase muscle protein synthesis, but this effect is attributed to the hyperaminoacidemia; ii) exogenous insulin administered systemically induces hypoaminoacidemia which obviates any insulin-stimulatory effect on muscle protein synthesis; iii) exogenous insulin resulting in supraphysiological insulin levels exceeding 50, 000  pmol/l may effectively augment muscle protein synthesis; iv) exogenous insulin may have a diminished effect on muscle protein synthesis in older adults due to age-related anabolic resistance; and v) exogenous insulin administered systemically does not increase muscle protein synthesis in healthy, young adults.


Nutrients | 2017

Beetroot Juice Supplementation Improves High-Intensity Intermittent Type Exercise Performance in Trained Soccer Players

Jean Nyakayiru; Kristin L. Jonvik; Jorn Trommelen; Philippe J. M. Pinckaers; Joan M. G. Senden; Luc J. C. van Loon; Lex B. Verdijk

It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.


Medicine and Science in Sports and Exercise | 2016

Fructose Coingestion Does Not Accelerate Postexercise Muscle Glycogen Repletion

Jorn Trommelen; Milou Beelen; Philippe J. M. Pinckaers; Joan M. G. Senden; Naomi M. Cermak; Luc J. C. van Loon

BACKGROUND Postexercise muscle glycogen repletion is largely determined by the systemic availability of exogenous carbohydrate provided. PURPOSE This study aimed to assess the effect of the combined ingestion of fructose and glucose on postexercise muscle glycogen repletion when optimal amounts of carbohydrate are ingested. METHODS Fourteen male cyclists (age: 28 ± 6 yr; Wmax: 4.8 ± 0.4 W·kg⁻¹) were studied on three different occasions. Each test day started with a glycogen-depleting exercise session. This was followed by a 5-h recovery period, during which subjects ingested 1.5 g·kg⁻¹·h⁻¹ glucose (GLU), 1.2 g·kg⁻¹·h⁻¹ glucose + 0.3 g·kg⁻¹·h⁻¹ fructose (GLU + FRU), or 0.9 g·kg⁻¹·h⁻¹ glucose + 0.6 g·kg⁻¹·h⁻¹ sucrose (GLU + SUC). Blood samples and gastrointestinal distress questionnaires were collected frequently, and muscle biopsy samples were taken at 0, 120, and 300 min after cessation of exercise to measure muscle glycogen content. RESULTS Plasma glucose responses did not differ between treatments (ANOVA, P = 0.096), but plasma insulin and lactate concentrations were elevated during GLU + FRU and GLU + SUC when compared with GLU (P < 0.01). Muscle glycogen content immediately after exercise averaged 207 ± 112, 219 ± 107, and 236 ± 118 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P = 0.362). Carbohydrate ingestion increased muscle glycogen concentrations during 5 h of postexercise recovery to 261 ± 98, 289 ± 130, and 315 ± 103 mmol·kg⁻¹ dry weight in the GLU, GLU + FRU, and GLU + SUC treatments, respectively (P < 0.001), with no differences between treatments (time × treatment, P = 0.757). CONCLUSIONS Combined ingestion of glucose plus fructose does not further accelerate postexercise muscle glycogen repletion in trained cyclists when ample carbohydrate is ingested. Combined ingestion of glucose (polymers) plus fructose or sucrose reduces gastrointestinal complaints when ingesting large amounts of carbohydrate.


Nutrients | 2017

Fructose and Sucrose Intake Increase Exogenous Carbohydrate Oxidation during Exercise

Jorn Trommelen; Cas J. Fuchs; Milou Beelen; Kaatje Lenaerts; Asker E. Jeukendrup; Naomi M. Cermak; Luc J. C. van Loon

Peak exogenous carbohydrate oxidation rates typically reach ~1 g·min−1 during exercise when ample glucose or glucose polymers are ingested. Fructose co-ingestion has been shown to further increase exogenous carbohydrate oxidation rates. The purpose of this study was to assess the impact of fructose co-ingestion provided either as a monosaccharide or as part of the disaccharide sucrose on exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists. Ten trained male cyclists (VO2peak: 65 ± 2 mL·kg−1·min−1) cycled on four different occasions for 180 min at 50% Wmax during which they consumed a carbohydrate solution providing 1.8 g·min−1 of glucose (GLU), 1.2 g·min−1 glucose + 0.6 g·min−1 fructose (GLU + FRU), 0.6 g·min−1 glucose + 1.2 g·min−1 sucrose (GLU + SUC), or water (WAT). Peak exogenous carbohydrate oxidation rates did not differ between GLU + FRU and GLU + SUC (1.40 ± 0.06 vs. 1.29 ± 0.07 g·min−1, respectively, p = 0.999), but were 46% ± 8% higher when compared to GLU (0.96 ± 0.06 g·min−1: p < 0.05). In line, exogenous carbohydrate oxidation rates during the latter 120 min of exercise were 46% ± 8% higher in GLU + FRU or GLU + SUC compared with GLU (1.19 ± 0.12, 1.13 ± 0.21, and 0.82 ± 0.16 g·min−1, respectively, p < 0.05). We conclude that fructose co-ingestion (0.6 g·min−1) with glucose (1.2 g·min−1) provided either as a monosaccharide or as sucrose strongly increases exogenous carbohydrate oxidation rates during prolonged exercise in trained cyclists.


American Journal of Physiology-endocrinology and Metabolism | 2018

Pre-sleep dietary protein-derived amino acids are incorporated in myofibrillar protein during post-exercise overnight recovery

Jorn Trommelen; Imre W. K. Kouw; Andrew M. Holwerda; Tim Snijders; Shona L. Halson; Ian Rollo; Lex B. Verdijk; Luc J. C. van Loon

The purpose of this study was to determine the impact of ingesting 30 g casein protein with and without 2 g free leucine before sleep on myofibrillar protein synthesis rates during postexercise overnight recovery. Thirty-six healthy young men performed a single bout of resistance-type exercise in the evening (1945) after a full day of dietary standardization. Thirty minutes before sleep (2330), subjects ingested 30 g intrinsically l-[1-13C]phenylalanine-labeled protein with (PRO+leu, n = 12) or without (PRO, n = 12) 2 g free leucine, or a noncaloric placebo (PLA, n = 12). Continuous intravenous l-[ ring-2H5]phenylalanine, l-[1-13C]leucine, and l-[ ring-2H2]tyrosine infusions were applied. Blood and muscle tissue samples were collected to assess whole body protein net balance, myofibrillar protein synthesis rates, and overnight incorporation of dietary protein-derived amino acids into myofibrillar protein. Protein ingestion before sleep improved overnight whole body protein net balance ( P < 0.001). Myofibrillar protein synthesis rates did not differ significantly between treatments as assessed by l-[ ring-2H5]phenylalanine (0.057 ± 0.002, 0.055 ± 0.002, and 0.055 ± 0.004%/h for PLA, PRO, and PRO+leu, respectively; means ± SE; P = 0.850) or l-[1-13C]leucine (0.080 ± 0.004, 0.073 ± 0.004, and 0.083 ± 0.006%/h, respectively; P = 0.328). Myofibrillar l-[1-13C]phenylalanine enrichments increased following protein ingestion but did not differ between the PRO and PRO+leu treatments. In conclusion, protein ingestion before sleep improves whole body protein net balance and provides amino acids that are incorporated into myofibrillar protein during sleep. However, the ingestion of 30 g casein protein with or without additional free leucine before sleep does not increase muscle protein synthesis rates during postexercise overnight recovery.


Journal of Nutrition | 2017

Protein Ingestion before Sleep Increases Overnight Muscle Protein Synthesis Rates in Healthy Older Men: A Randomized Controlled Trial

Imre W. K. Kouw; Andrew M. Holwerda; Jorn Trommelen; Irene Fleur Kramer; Jacqueline Bastiaanse; Shona L. Halson; Will K. W. H. Wodzig; Lex B. Verdijk; Luc J. C. van Loon

Background: The loss of skeletal muscle mass with aging has been attributed to the blunted anabolic response to protein intake. Presleep protein ingestion has been suggested as an effective strategy to compensate for such anabolic resistance.Objective: We assessed the efficacy of presleep protein ingestion on dietary protein digestion and absorption kinetics and overnight muscle protein synthesis rates in older men.Methods: In a randomized, double-blind, parallel design, 48 older men (mean ± SEM age: 72 ± 1 y) ingested 40 g casein (PRO40), 20 g casein (PRO20), 20 g casein plus 1.5 g leucine (PRO20+LEU), or a placebo before sleep. Ingestion of intrinsically l-[1-13C]-phenylalanine- and l-[1-13C]-leucine-labeled protein was combined with intravenous l-[ring-2H5]-phenylalanine and l-[1-13C]-leucine infusions during sleep. Muscle and blood samples were collected throughout overnight sleep.Results: Exogenous phenylalanine appearance rates increased after protein ingestion, but to a greater extent in PRO40 than in PRO20 and PRO20+LEU (P < 0.05). Overnight myofibrillar protein synthesis rates (based on l-[ring-2H5]-phenylalanine) were 0.033% ± 0.002%/h, 0.037% ± 0.003%/h, 0.039% ± 0.002%/h, and 0.044% ± 0.003%/h in placebo, PRO20, PRO20+LEU, and PRO40, respectively, and were higher in PRO40 than in placebo (P = 0.02). Observations were similar based on l-[1-13C]-leucine tracer (placebo: 0.047% ± 0.004%/h and PRO40: 0.058% ± 0.003%/h, P = 0.08). More protein-derived amino acids (l-[1-13C]-phenylalanine) were incorporated into myofibrillar protein in PRO40 than in PRO20 (0.033 ± 0.002 and 0.019 ± 0.002 MPE, respectively, P < 0.001) and tended to be higher than in PRO20+LEU (0.025 ± 0.002 MPE, P = 0.06).Conclusions: Protein ingested before sleep is properly digested and absorbed throughout the night, providing precursors for myofibrillar protein synthesis during sleep in healthy older men. Ingestion of 40 g protein before sleep increases myofibrillar protein synthesis rates during overnight sleep. These findings provide the scientific basis for a novel nutritional strategy to support muscle mass preservation in aging and disease. This trial was registered at www.trialregister.nl as NTR3885.

Collaboration


Dive into the Jorn Trommelen's collaboration.

Top Co-Authors

Avatar

Luc J. C. van Loon

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Lex B. Verdijk

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Holwerda

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Imre W. K. Kouw

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar

Shona L. Halson

Australian Institute of Sport

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Naomi M. Cermak

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kaatje Lenaerts

Maastricht University Medical Centre

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge