Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jos Jonkers is active.

Publication


Featured researches published by Jos Jonkers.


Nature Genetics | 2001

Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer.

Jos Jonkers; Ralph Meuwissen; Hanneke van der Gulden; Hans Peterse; Martin van der Valk; Anton Berns

Inheritance of one defective BRCA2 allele predisposes humans to breast cancer. To establish a mouse model for BRCA2-associated breast cancer, we generated mouse conditional mutants with BRCA2 and/or p53 inactivated in various epithelial tissues, including mammary-gland epithelium. Although no tumors arose in mice carrying conditional Brca2 alleles, mammary and skin tumors developed frequently in females carrying conditional Brca2 and Trp53 alleles. The presence of one wildtype Brca2 allele resulted in a markedly delayed tumor formation; loss of the wildtype Brca2 allele occurred in a subset of these tumors. Our results show that inactivation of BRCA2 and of p53 combine to mediate mammary tumorigenesis, and indicate that disruption of the p53 pathway is pivotal in BRCA2-associated breast cancer.


Nature Structural & Molecular Biology | 2010

53BP1 loss rescues BRCA1 deficiency and is associated with triple-negative and BRCA-mutated breast cancers

Peter Bouwman; Amal Aly; Jose Miguel Escandell; Mark Pieterse; Jirina Bartkova; Hanneke van der Gulden; Sanne Hiddingh; Maria Thanasoula; Atul Kulkarni; Qifeng Yang; Bruce G. Haffty; Johanna Tommiska; Carl Blomqvist; Ronny Drapkin; David J. Adams; Heli Nevanlinna; Jiri Bartek; Madalena Tarsounas; Shridar Ganesan; Jos Jonkers

Germ-line mutations in breast cancer 1, early onset (BRCA1) result in predisposition to breast and ovarian cancer. BRCA1-mutated tumors show genomic instability, mainly as a consequence of impaired recombinatorial DNA repair. Here we identify p53-binding protein 1 (53BP1) as an essential factor for sustaining the growth arrest induced by Brca1 deletion. Depletion of 53BP1 abrogates the ATM-dependent checkpoint response and G2 cell-cycle arrest triggered by the accumulation of DNA breaks in Brca1-deleted cells. This effect of 53BP1 is specific to BRCA1 function, as 53BP1 depletion did not alleviate proliferation arrest or checkpoint responses in Brca2-deleted cells. Notably, loss of 53BP1 partially restores the homologous-recombination defect of Brca1-deleted cells and reverts their hypersensitivity to DNA-damaging agents. We find reduced 53BP1 expression in subsets of sporadic triple-negative and BRCA-associated breast cancers, indicating the potential clinical implications of our findings.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High sensitivity of BRCA1-deficient mammary tumors to the PARP inhibitor AZD2281 alone and in combination with platinum drugs

Sven Rottenberg; Janneke E. Jaspers; Ariena Kersbergen; Eline van der Burg; Anders O.H. Nygren; Serge A.L. Zander; Patrick W. B. Derksen; Michiel de Bruin; John Zevenhoven; Alan Lau; Robert Boulter; Aaron Cranston; Mark J. O'Connor; Niall Morrison Barr Martin; Piet Borst; Jos Jonkers

Whereas target-specific drugs are available for treating ERBB2-overexpressing and hormone receptor-positive breast cancers, no tailored therapy exists for hormone receptor- and ERBB2-negative (“triple-negative”) mammary carcinomas. Triple-negative tumors account for 15% of all breast cancers and frequently harbor defects in DNA double-strand break repair through homologous recombination (HR), such as BRCA1 dysfunction. The DNA-repair defects characteristic of BRCA1-deficient cells confer sensitivity to poly(ADP-ribose) polymerase 1 (PARP1) inhibition, which could be relevant to treatment of triple-negative tumors. To evaluate PARP1 inhibition in a realistic in vivo setting, we tested the PARP inhibitor AZD2281 in a genetically engineered mouse model (GEMM) for BRCA1-associated breast cancer. Treatment of tumor-bearing mice with AZD2281 inhibited tumor growth without signs of toxicity, resulting in strongly increased survival. Long-term treatment with AZD2281 in this model did result in the development of drug resistance, caused by up-regulation of Abcb1a/b genes encoding P-glycoprotein efflux pumps. This resistance to AZD2281 could be reversed by coadministration of the P-glycoprotein inhibitor tariquidar. Combination of AZD2281 with cisplatin or carboplatin increased the recurrence-free and overall survival, suggesting that AZD2281 potentiates the effect of these DNA-damaging agents. Our results demonstrate in vivo efficacy of AZD2281 against BRCA1-deficient breast cancer and illustrate how GEMMs of cancer can be used for preclinical evaluation of novel therapeutics and for testing ways to overcome or circumvent therapy resistance.


Proceedings of the National Academy of Sciences of the United States of America | 2001

Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells

Ate Loonstra; Marc Vooijs; H. Berna Beverloo; Bushra Al Allak; Ellen van Drunen; Roland Kanaar; Anton Berns; Jos Jonkers

The use of Cre/loxP recombination in mammalian cells has expanded rapidly. We describe here that Cre expression in cultured mammalian cells may result in a markedly reduced proliferation and that this effect is dependent on the endonuclease activity of Cre. Chromosome analysis after Cre expression revealed numerous chromosomal aberrations and an increased number of sister chromatid exchanges. Titration experiments in mouse embryo fibroblasts with a ligand-regulatable Cre-ERT show that toxicity is dependent on the level of Cre activity. Prolonged, low levels of Cre activity permit recombination without concomitant toxicity. This urges for a careful titration of Cre activity in conditional gene modification in mammalian cells.


Molecular and Cellular Biology | 2006

Autotaxin, a Secreted Lysophospholipase D, Is Essential for Blood Vessel Formation during Development

Laurens A. van Meeteren; Paula Ruurs; Catelijne Stortelers; Peter Bouwman; Marga A. van Rooijen; Jean Philippe Pradère; Trevor R. Pettit; Michael J. O. Wakelam; Jean Sébastien Saulnier-Blache; Wouter H. Moolenaar; Jos Jonkers

ABSTRACT Autotaxin (ATX), or nucleotide pyrophosphatase-phosphodiesterase 2, is a secreted lysophospholipase D that promotes cell migration, metastasis, and angiogenesis. ATX generates lysophosphatidic acid (LPA), a lipid mitogen and motility factor that acts on several G protein-coupled receptors. Here we report that ATX-deficient mice die at embryonic day 9.5 (E9.5) with profound vascular defects in yolk sac and embryo resembling the Gα13 knockout phenotype. Furthermore, at E8.5, ATX-deficient embryos showed allantois malformation, neural tube defects, and asymmetric headfolds. The onset of these abnormalities coincided with increased expression of ATX and LPA receptors in normal embryos. ATX heterozygous mice appear healthy but show half-normal ATX activity and plasma LPA levels. Our results reveal a critical role for ATX in vascular development, indicate that ATX is the major LPA-producing enzyme in vivo, and suggest that the vascular defects in ATX-deficient embryos may be explained by loss of LPA signaling through Gα13.


Cancer Discovery | 2014

Patient-Derived Xenograft Models: An Emerging Platform for Translational Cancer Research

Manuel Hidalgo; Frédéric Amant; Andrew V. Biankin; Eva Budinská; Annette T. Byrne; Carlos Caldas; Robert B. Clarke; Steven de Jong; Jos Jonkers; Gunhild M. Mælandsmo; Sergio Roman-Roman; Joan Seoane; Livio Trusolino; Alberto Villanueva

UNLABELLED Recently, there has been an increasing interest in the development and characterization of patient-derived tumor xenograft (PDX) models for cancer research. PDX models mostly retain the principal histologic and genetic characteristics of their donor tumor and remain stable across passages. These models have been shown to be predictive of clinical outcomes and are being used for preclinical drug evaluation, biomarker identification, biologic studies, and personalized medicine strategies. This article summarizes the current state of the art in this field, including methodologic issues, available collections, practical applications, challenges and shortcomings, and future directions, and introduces a European consortium of PDX models. SIGNIFICANCE PDX models are increasingly used in translational cancer research. These models are useful for drug screening, biomarker development, and the preclinical evaluation of personalized medicine strategies. This review provides a timely overview of the key characteristics of PDX models and a detailed discussion of future directions in the field.


The EMBO Journal | 1999

Axin and Frat1 interact with dvl and GSK, bridging Dvl to GSK in Wnt-mediated regulation of LEF-1.

Lin Li; Huidong Yuan; Carole Weaver; Junhao Mao; Gist H. Farr; Daniel J. Sussman; Jos Jonkers; David Kimelman; Dianqing Wu

Wnt proteins transduce their signals through dishevelled (Dvl) proteins to inhibit glycogen synthase kinase 3β (GSK), leading to the accumulation of cytosolic β‐catenin and activation of TCF/LEF‐1 transcription factors. To understand the mechanism by which Dvl acts through GSK to regulate LEF‐1, we investigated the roles of Axin and Frat1 in Wnt‐mediated activation of LEF‐1 in mammalian cells. We found that Dvl interacts with Axin and with Frat1, both of which interact with GSK. Similarly, the Frat1 homolog GBP binds Xenopus Dishevelled in an interaction that requires GSK. We also found that Dvl, Axin and GSK can form a ternary complex bridged by Axin, and that Frat1 can be recruited into this complex probably by Dvl. The observation that the Dvl‐binding domain of either Frat1 or Axin was able to inhibit Wnt‐1‐induced LEF‐1 activation suggests that the interactions between Dvl and Axin and between Dvl and Frat may be important for this signaling pathway. Furthermore, Wnt‐1 appeared to promote the disintegration of the Frat1–Dvl–GSK–Axin complex, resulting in the dissociation of GSK from Axin. Thus, formation of the quaternary complex may be an important step in Wnt signaling, by which Dvl recruits Frat1, leading to Frat1‐mediated dissociation of GSK from Axin.


Nature | 2016

Landscape of somatic mutations in 560 breast cancer whole-genome sequences

Serena Nik-Zainal; Helen Davies; Johan Staaf; Manasa Ramakrishna; Dominik Glodzik; Xueqing Zou; Inigo Martincorena; Ludmil B. Alexandrov; Sancha Martin; David C. Wedge; Peter Van Loo; Young Seok Ju; Michiel M. Smid; Arie B. Brinkman; Sandro Morganella; Miriam Ragle Aure; Ole Christian Lingjærde; Anita Langerød; Markus Ringnér; Sung-Min Ahn; Sandrine Boyault; Jane E. Brock; Annegien Broeks; Adam Butler; Christine Desmedt; Luc Dirix; Serge Dronov; Aquila Fatima; John A. Foekens; Moritz Gerstung

We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.


Nature | 2015

IL-17-producing γδ T cells and neutrophils conspire to promote breast cancer metastasis

Seth B. Coffelt; Kelly Kersten; Chris W. Doornebal; Jorieke Weiden; Kim Vrijland; Cheei-Sing Hau; Niels J.M. Verstegen; Metamia Ciampricotti; Lukas J.A.C. Hawinkels; Jos Jonkers; Karin E. de Visser

Metastatic disease remains the primary cause of death for patients with breast cancer. The different steps of the metastatic cascade rely on reciprocal interactions between cancer cells and their microenvironment. Within this local microenvironment and in distant organs, immune cells and their mediators are known to facilitate metastasis formation. However, the precise contribution of tumour-induced systemic inflammation to metastasis and the mechanisms regulating systemic inflammation are poorly understood. Here we show that tumours maximize their chance of metastasizing by evoking a systemic inflammatory cascade in mouse models of spontaneous breast cancer metastasis. We mechanistically demonstrate that interleukin (IL)-1β elicits IL-17 expression from gamma delta (γδ) T cells, resulting in systemic, granulocyte colony-stimulating factor (G-CSF)-dependent expansion and polarization of neutrophils in mice bearing mammary tumours. Tumour-induced neutrophils acquire the ability to suppress cytotoxic T lymphocytes carrying the CD8 antigen, which limit the establishment of metastases. Neutralization of IL-17 or G-CSF and absence of γδ T cells prevents neutrophil accumulation and downregulates the T-cell-suppressive phenotype of neutrophils. Moreover, the absence of γδ T cells or neutrophils profoundly reduces pulmonary and lymph node metastases without influencing primary tumour progression. Our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system—the γδ T cell/IL-17/neutrophil axis—represents a new strategy to inhibit metastatic disease.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human BRCA1-mutated basal-like breast cancer

Xiaoling Liu; Henne Holstege; Hanneke van der Gulden; Marcelle Treur-Mulder; John Zevenhoven; Arno Velds; Ron M. Kerkhoven; Martin H. van Vliet; Lodewyk F. A. Wessels; Johannes L. Peterse; Anton Berns; Jos Jonkers

Women carrying germ-line mutations in BRCA1 are strongly predisposed to developing breast cancers with characteristic features also observed in sporadic basal-like breast cancers. They appear as high-grade tumors with high proliferation rates and pushing borders. On the molecular level, they are negative for hormone receptors and ERBB2, display frequent TP53 mutations, and express basal epithelial markers. To study the role of BRCA1 and P53 loss of function in breast cancer development, we generated conditional mouse models with tissue-specific mutation of Brca1 and/or p53 in basal epithelial cells. Somatic loss of both BRCA1 and p53 resulted in the rapid and efficient formation of highly proliferative, poorly differentiated, estrogen receptor-negative mammary carcinomas with pushing borders and increased expression of basal epithelial markers, reminiscent of human basal-like breast cancer. BRCA1- and p53-deficient mouse mammary tumors exhibit dramatic genomic instability, and their molecular signatures resemble those of human BRCA1-mutated breast cancers. Thus, these tumors display important hallmarks of hereditary breast cancers in BRCA1-mutation carriers.

Collaboration


Dive into the Jos Jonkers's collaboration.

Top Co-Authors

Avatar

Anton Berns

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Sven Rottenberg

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Peter Bouwman

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sjoerd Klarenbeek

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Piet Borst

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eva Schut

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Eline van der Burg

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar

Julian R. de Ruiter

Netherlands Cancer Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge