Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jos M. Grimbergen is active.

Publication


Featured researches published by Jos M. Grimbergen.


Journal of Virology | 2003

Replication-Deficient Human Adenovirus Type 35 Vectors for Gene Transfer and Vaccination: Efficient Human Cell Infection and Bypass of Preexisting Adenovirus Immunity

Ronald Vogels; David Zuijdgeest; Richard van Rijnsoever; Eric Hartkoorn; Irma Damen; Marie-Pierre de Béthune; Stefan Kostense; Germaine Penders; Niels Helmus; Wouter Koudstaal; Marco G. Cecchini; Antoinette Wetterwald; Mieke Sprangers; Angelique A. C. Lemckert; Olga Ophorst; Björn Koel; Michelle van Meerendonk; Paul H.A. Quax; Laura Panitti; Jos M. Grimbergen; Abraham Bout; Jaap Goudsmit; Menzo Jans Emco Havenga

ABSTRACT Replication-deficient human adenovirus type 5 (Ad5) can be produced to high titers in complementing cell lines, such as PER.C6, and is widely used as a vaccine and gene therapy vector. However, preexisting immunity against Ad5 hampers consistency of gene transfer, immunological responses, and vector-mediated toxicities. We report the identification of human Ad35 as a virus with low global prevalence and the generation of an Ad35 vector plasmid system for easy insertion of heterologous genes. In addition, we have identified the minimal sequence of the Ad35-E1B region (molecular weight, 55,000 [55K]), pivotal for complementation of fully E1-lacking Ad35 vector on PER.C6 cells. After stable insertion of the 55K sequence into PER.C6 cells a cell line was obtained (PER.C6/55K) that efficiently transcomplements both Ad5 and Ad35 vectors. We further demonstrate that transduction with Ad35 is not hampered by preexisting Ad5 immunity and that Ad35 efficiently infects dendritic cells, smooth muscle cells, and synoviocytes, in contrast to Ad5.


Journal of Virology | 2002

Exploiting the Natural Diversity in Adenovirus Tropism for Therapy and Prevention of Disease

Menzo Jans Emco Havenga; Angelique A. C. Lemckert; Olga Ophorst; M. van Meijer; Wilfred T. V. Germeraad; Jos M. Grimbergen; M. van den Doel; Ronald Vogels; J. van Deutekom; Anneke A.M. Janson; J. D. de Bruijn; F. Uytdehaag; Paul H.A. Quax; Ton Logtenberg; M. Mehtali; Abraham Bout

ABSTRACT Since targeting of recombinant adenovirus vectors to defined cell types in vivo is a major challenge in gene therapy and vaccinology, we explored the natural diversity in human adenovirus tissue tropism. Hereto, we constructed a library of Ad5 vectors carrying fibers from other human serotypes. From this library, we identified vectors that efficiently infect human cells that are important for diverse gene therapy approaches and for induction of immunity. For several medical applications (prenatal diagnosis, artificial bone, vaccination, and cardiovascular disease), we demonstrate the applicability of these novel vectors. In addition, screening cell types derived from different species revealed that cellular receptors for human subgroup B adenoviruses are not conserved between rodents and primates. These results provide a rationale for utilizing elements of human adenovirus serotypes to generate chimeric vectors that improve our knowledge concerning adenovirus biology and widen the therapeutic window for vaccination and many different gene transfer applications.


Journal of Virology | 2001

Improved Adenovirus Vectors for Infection of Cardiovascular Tissues

Menzo Jans Emco Havenga; Angelique A. C. Lemckert; Jos M. Grimbergen; Ronald Vogels; L.G.M. Huisman; Dinko Valerio; Abraham Bout; Paul H.A. Quax

ABSTRACT To identify improved adenovirus vectors for cardiovascular gene therapy, a library of adenovirus vectors based on adenovirus serotype 5 (Ad5) but carrying fiber molecules of other human serotypes, was generated. This library was tested for efficiency of infection of human primary vascular endothelial cells (ECs) and smooth muscle cells (SMCs). Based on luciferase, LacZ, or green fluorescent protein (GFP) marker gene expression, several fiber chimeric vectors were identified that displayed improved infection of these cell types. One of the viruses that performed particularly well is an Ad5 carrying the fiber of Ad16 (Ad5.Fib16), a subgroup B virus. This virus showed, on average, 8- and 64-fold-increased luciferase activities on umbilical vein ECs and SMCs, respectively, compared to the parent vector. GFP andlacZ markers showed that approximately 3-fold (ECs) and 10-fold (SMCs) more cells were transduced. Experiments performed with both cultured SMCs and organ cultures derived from different vascular origins (saphenous vein, iliac artery, left interior mammary artery, and aorta) and from different species demonstrated that Ad5.Fib16 consistently displays improved infection in primates (humans and rhesus monkeys). SMCs of the same vessels of rodents and pigs were less infectable with Ad5.Fib16 than with Ad5. This suggests that either the receptor for human Ad16 is not conserved between different species or that differences in the expression levels of the putative receptor exist. In conclusion, our results show that an Ad5-based virus carrying the fiber of Ad16 is a potent vector for the transduction of primate cardiovascular cells and tissues.


Circulation | 2002

Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice.

E. Karin Arkenbout; Vivian de Waard; Maaike van Bragt; Tanja A.E. van Achterberg; Jos M. Grimbergen; Bruno Pichon; Hans Pannekoek; Carlie J.M. de Vries

Background—Smooth muscle cells (SMCs) play a key role in intimal thickening in atherosclerosis and restenosis. The precise signaling pathways by which the proliferation of SMCs is regulated are largely unknown. The TR3 orphan receptor, the mitogen-induced nuclear orphan receptor (MINOR), and the nuclear receptor of T cells (NOT) are a subfamily of transcription factors belonging to the nuclear receptor superfamily and are induced in activated SMCs. In this study, we investigated the role of these transcription factors in SMC proliferation in atherogenesis. Methods and Results—Multiple human vascular specimens at distinct stages of atherosclerosis (lesion types II to V by American Heart Association classification) derived from 14 different individuals were studied for expression of these transcription factors. We observed expression of TR3, MINOR, and NOT in neointimal SMCs, whereas no expression was detected in medial SMCs. Adenovirus-mediated expression of a dominant-negative variant of TR3, which suppresses the transcriptional activity of each subfamily member, increases DNA synthesis and decreases p27Kip1 protein expression in cultured SMCs. We generated transgenic mice that express this dominant-negative variant or full-length TR3 under control of a vascular SMC-specific promoter. Carotid artery ligation of transgenic mice that express the dominant-negative variant of TR3 in arterial SMCs, compared with lesions formed in wild-type mice, results in a 3-fold increase in neointimal formation, whereas neointimal formation is inhibited 5-fold in transgenic mice expressing full-length TR3. Conclusions—Our results reveal that TR3 and possibly other members of this transcription factor subfamily inhibit vascular lesion formation. These transcription factors could serve as novel targets in the treatment of vascular disease.


Gene Therapy | 2003

Cartilage degradation and invasion by rheumatoid synovial fibroblasts is inhibited by gene transfer of TIMP-1 and TIMP-3

Wh van der Laan; Paul H.A. Quax; Ca Seemayer; L.G.M. Huisman; E Pieterman; Jos M. Grimbergen; J.H. Verheijen; F. C. Breedveld; T. W. J. Huizinga; Thomas Pap

Matrix metalloproteinases (MMPs) are believed to be pivotal enzymes in the invasion of articular cartilage by synovial tissue in rheumatoid arthritis (RA). Here, we investigated the effects of gene transfer of tissue inhibitors of metalloproteinases (TIMPs) on the invasiveness of RA synovial fibroblasts (RASF) in vitro and in vivo.Adenoviral vectors (Ad) were used for gene transfer. The effects of AdTIMP-1 and AdTIMP-3 gene transfer on matrix invasion were investigated in vitro in a transwell system. Cartilage invasion in vivo was studied in the SCID mouse co-implantation model for 60 days. In addition, the effects of AdTIMP-1 and AdTIMP-3 on cell proliferation were investigated.A significant reduction in invasiveness was demonstrated in vitro as well as in vivo in both the AdTIMP-1- and AdTIMP-3-transduced RASF compared with untransduced SF or SF that were transduced with control vectors. in vitro, the number of invading cells was reduced to 25% (P<0.001) in the AdTIMP-1-transduced cells and to 13% (P<0.0001) in the AdTIMP-3-transduced cells (% of untransduced cells). Cell proliferation was significantly inhibited by AdTIMP-3 and, less, by AdTIMP-1.In conclusion, overexpression of TIMP-1 and TIMP-3 by Ad gene transfer results in a marked reduction of the invasiveness of RASF in vitro and in the SCID mouse model. Apart from the inhibition of MMPs, a reduction in proliferation rate may contribute to this effect. These results suggest that overexpression of TIMPs, particularly TIMP-3 at the invasive front of pannus tissue, may provide a novel therapeutic strategy for inhibiting joint destruction in RA.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2006

Anti–MCP-1 Gene Therapy Inhibits Vascular Smooth Muscle Cells Proliferation and Attenuates Vein Graft Thickening Both In Vitro and In Vivo

Abbey Schepers; Daniel Eefting; Peter I. Bonta; Jos M. Grimbergen; M.R. de Vries; V. van Weel; C.J. de Vries; Kensuke Egashira; J.H. van Bockel; Paul H.A. Quax

Objective—Because late vein graft failure is caused by intimal hyperplasia (IH) and accelerated atherosclerosis, and these processes are thought to be inflammation driven, influx of monocytes is one of the first phenomena seen in IH, we would like to provide direct evidence for a role of the MCP-1 pathway in the development of vein graft disease. Methods and Results—MCP-1 expression is demonstrated in various stages of vein graft disease in a murine model in which venous interpositions are placed in the carotid arteries of hypercholesterolemic ApoE3Leiden mice and in cultured human saphenous vein (HSV) segments in which IH occurs. The functional involvement of MCP-1 in vein graft remodeling is demonstrated by blocking the MCP-1 receptor CCR-2 using 7ND-MCP-1. 7ND-MCP1 gene transfer resulted in 51% reduction in IH in the mouse model, when compared with controls. In HSV cultures neointima formation was inhibited by 53%. In addition, we demonstrate a direct inhibitory effect of 7ND-MCP-1 on the proliferation of smooth muscle cell (SMC) in HSV cultures and in SMC cell cultures. Conclusion—These data, for the first time, prove that MCP-1 has a pivotal role in vein graft thickening due to intimal hyperplasia and accelerated atherosclerosis.


Circulation | 2001

Adenoviral Expression of a Urokinase Receptor–Targeted Protease Inhibitor Inhibits Neointima Formation in Murine and Human Blood Vessels

Paul H.A. Quax; Martine Lamfers; J.H.P. Lardenoye; Jos M. Grimbergen; Margreet R. de Vries; Jennichjen Slomp; Marco C. de Ruiter; Mark M. Kockx; J.H. Verheijen; Victor W.M. van Hinsbergh

Background —Smooth muscle cell migration, in addition to proliferation, contributes to a large extent to the neointima formed in humans after balloon angioplasty or bypass surgery. Plasminogen activator/plasmin–mediated proteolysis is an important mediator of this smooth muscle cell migration. Here, we report the construction of a novel hybrid protein designed to inhibit the activity of cell surface–bound plasmin, which cannot be inhibited by its natural inhibitors, such as &agr;2-antiplasmin. This hybrid protein, consisting of the receptor-binding amino-terminal fragment of uPA (ATF), linked to the potent protease inhibitor bovine pancreas trypsin inhibitor (BPTI), can inhibit plasmin activity at the cell surface. Methods and Results —The effect of adenovirus-mediated ATF.BPTI expression on neointima formation was tested in human saphenous vein organ cultures. Infection of human saphenous vein segments with Ad.CMV.ATF.BPTI (5×109 pfu/mL) resulted in 87.5±3.8% (mean±SEM, n=10) inhibition of neointima formation after 5 weeks, whereas Ad.CMV.ATF or Ad.CMV.BPTI virus had only minimal or no effect on neointima formation. The efficacy of ATF.BPTI in vivo was demonstrated in a murine model for neointima formation. Neointima formation in the femoral artery of mice, induced by placement of a polyethylene cuff, was strongly inhibited (93.9±2%) after infection with Ad.CMV.mATF.BPTI, a variant of ATF.BPTI able to bind specifically to murine uPA receptor; Ad.CMV.mATF and Ad.CMV.BPTI had no significant effect. Conclusions —These data provide evidence that adenoviral transfer of a hybrid protein that binds selectively to the uPA receptor and inhibits plasmin activity directly on the cell surface is a powerful approach to inhibiting neointima formation and restenosis.


Circulation Research | 2004

Vascular Endothelial Growth Factor Overexpression in Ischemic Skeletal Muscle Enhances Myoglobin Expression In Vivo

Vincent van Weel; Martine Deckers; Jos M. Grimbergen; Kees van Leuven; J.H.P. Lardenoye; Reinier O. Schlingemann; Geerten P. van Nieuw Amerongen; J. Hajo van Bockel; Victor W.M. van Hinsbergh; Paul H.A. Quax

Therapeutic angiogenesis using vascular endothelial growth factor (VEGF) is considered a promising new therapy for patients with arterial obstructive disease. Clinical improvements observed consist of improved muscle function and regression of rest pain or angina. However, direct evidence for improved vascularization, as evaluated by angiography, is weak. In this study, we report an angiogenesis-independent effect of VEGF on ischemic skeletal muscle, ie, upregulation of myoglobin after VEGF treatment. Mice received intramuscular injection with adenoviral VEGF-A or either adenoviral LacZ or PBS as control, followed by surgical induction of acute hindlimb ischemia at day 3. At day 6, capillary density was increased in calf muscle of Ad.VEGF-treated versus control mice (P < 0.01). However, angiographic score of collateral arteries was unchanged between Ad.VEGF-treated and control mice. More interestingly, an increase in myoglobin was observed in Ad.VEGF-treated mice. Active myoglobin was 1.5-fold increased in calf muscle of Ad.VEGF-treated mice (P ≤0.01). In addition, the number of myoglobin-stained myofibers was 2.6-fold increased in Ad.VEGF-treated mice (P = 0.001). Furthermore, in ischemic muscle of 15 limb amputation patients, VEGF and myoglobin were coexpressed. Finally, in cultured C2C12 myotubes treated with rhVEGF, myoglobin mRNA was 2.8-fold raised as compared with PBS-treated cells (P = 0.02). This effect could be blocked with the VEGF receptor tyrosine kinase inhibitor SU5416. In conclusion, we show that VEGF upregulates myoglobin in ischemic muscle both in vitro and in vivo. Increased myoglobin expression in VEGF-treated muscle implies an improved muscle oxygenation, which may, at least partly, explain observed clinical improvements in VEGF-treated patients, in the absence of improved vascularization.


Arteriosclerosis, Thrombosis, and Vascular Biology | 2003

TR3 Orphan Receptor Is Expressed in Vascular Endothelial Cells and Mediates Cell Cycle Arrest

E. Karin Arkenbout; Maaike van Bragt; Eric Eldering; Chris van Bree; Jos M. Grimbergen; Paul H.A. Quax; Hans Pannekoek; Carlie J.M. de Vries

Objective—Endothelial cells play a pivotal role in vascular homeostasis. In this study, we investigated the function of the nerve growth factor–induced protein-B (NGFI-B) subfamily of nuclear receptors comprising the TR3 orphan receptor (TR3), mitogen-induced nuclear orphan receptor (MINOR), and nuclear orphan receptor of T cells (NOT) in endothelial cells. Methods and Results—The mRNA expression of TR3, MINOR, and NOT in atherosclerotic lesions was assessed in human vascular specimens. Each of these factors is expressed in smooth muscle cells, as described before, and in subsets of endothelial cells, implicating that they might affect endothelial cell function. Adenoviral overexpression of TR3 in cultured endothelial cells resulted in decreased [3H]thymidine incorporation, whereas a dominant-negative TR3 variant that inhibits the activity of endogenous TR3-like factors enhanced DNA synthesis. TR3 interfered with progression of the cell cycle by upregulating p27Kip1 and downregulating cyclin A, whereas expression levels of a number of other cell cycle–associated proteins remained unchanged. Conclusions—These findings demonstrate that TR3 is a modulator of endothelial cell proliferation and arrests endothelial cells in the G1 phase of the cell cycle by influencing cell cycle protein levels. We hypothesize involvement of TR3 in the maintenance of integrity of the vascular endothelium.


Arteriosclerosis, Thrombosis, and Vascular Biology | 1998

Binding of Human Urokinase-Type Plasminogen Activator to Its Receptor Residues Involved in Species Specificity and Binding

Paul H.A. Quax; Jos M. Grimbergen; Mirian Lansink; Arjen H. F. Bakker; Marie-Claude Blatter; Dominique Belin; Victor W.M. van Hinsbergh; J.H. Verheijen

Urokinase-type plasminogen activator (UPA), particularly when bound to its receptor (UPAR), is thought to play a major role in local proteolytic processes, thus facilitating cell migration as may occur during angiogenesis, neointima and atherosclerotic plaque formation, and tumor cell invasion. To facilitate understanding of the need and function of the UPA/UPAR interaction in cell migration and vascular remodeling, we changed several amino acid residues in UPA so as to interfere with its interaction with its receptor. The receptor-binding domain of UPA has been localized to a region in the growth factor domain between residues 20 and 32. Since the binding of UPA to UPAR appears to be species specific, we used the differences in amino acid sequences in the growth factor domain of UPA between various species to construct a human UPA variant that does not bind to the human UPAR. We substituted Asn22 for its mouse equivalent Tyr by site-directed mutagenesis. This mutant UPA had similar plasminogen activator characteristics as wild-type UPA, including its specific activity and interaction with plasminogen activator inhibitor-1. However, no UPA/UPAR complexes could be observed in cross-linking experiments using DFP-treated 125I-labeled mutant UPA and lysates of various cells, including U937 histiocytic lymphoma cells, phorbol myristate acetate-treated human ECs, and mouse LB6 cells transfected with human UPAR cDNA. In direct binding experiments, DFP-treated 125I-labeled mutant UPA could not bind to phorbol myristate acetate-treated ECs, whereas wild-type UPA did bind. Furthermore, a 25-fold excess of wild-type UPA completely prevented the binding of DFP-treated 125I-labeled wild-type UPA to the human receptor on transfected LB6 cells, whereas an equal amount of mutant UPA had only a very small effect. In ligand blotting assays, very weak binding of mutant UPA to human UPAR could be observed. Changing Asn22 into the other amino acid residues alanine or glutamine had no effect on binding to UPAR on human ECs. The functional integrity of the growth factor domain in the non-receptor binding Asn22Tyr mutant is suggested by the fact that binding of this mutant to a murine UPAR can be restored after additional mutations in the growth factor domain, Asn27,His29,Trp30 to Arg27,Arg29,Arg30. We conclude that Asn22 and Asn27,His29,Trp30 in human UPA are key determinants in the species-specific binding of the enzyme to its receptor and that changing Asn22 into Tyr results in a UPA mutant with strongly reduced binding to UPAR.

Collaboration


Dive into the Jos M. Grimbergen's collaboration.

Top Co-Authors

Avatar

Paul H.A. Quax

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martine Lamfers

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Eefting

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Margreet R. de Vries

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

V.W.M. van Hinsbergh

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Jaap Koopman

University of Nottingham

View shared research outputs
Top Co-Authors

Avatar

J. Hajo van Bockel

Leiden University Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge