Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jos M. Milner is active.

Publication


Featured researches published by Jos M. Milner.


Journal of Animal Ecology | 2011

What determines variation in home range size across spatiotemporal scales in a large browsing herbivore

Floris M. van Beest; Inger Maren Rivrud; Leif Egil Loe; Jos M. Milner; Atle Mysterud

1. Most studies of intraspecific variation in home range size have investigated only a single or a few factors and often at one specific scale. However, considering multiple spatial and temporal scales when defining a home range is important as mechanisms that affect variation in home range size may differ depending on the scale under investigation. 2. We aim to quantify the relative effect of various individual, forage and climatic determinants of variation in home range size across multiple spatiotemporal scales in a large browsing herbivore, the moose (Alces alces), living at the southern limit of its distribution in Norway. 3. Total home range size and core home range areas were estimated for daily to monthly scales in summer and winter using both local convex hull (LoCoH) and fixed kernel home range methods. Variance in home range size was analysed using linear mixed-effects models for repeated measurements. 4. Reproductive status was the most influential individual-level factor explaining variance in moose home range size, with females accompanied by a calf having smaller summer ranges across all scales. Variation in home range size was strongly correlated with spatiotemporal changes in quantity and quality of natural food resources. Home range size decreased with increasing browse density at daily scales, but the relationship changed to positive at longer temporal scales. In contrast, browse quality was consistently negatively correlated with home range size except at the monthly scale during winter when depletion of high-quality forage occurs. Local climate affected total home range size more than core areas. Temperature, precipitation and snow depth influenced home range size directly at short temporal scales. 5. The relative effects of intrinsic and extrinsic determinants of variation in home range size differed with spatiotemporal scale, providing clear evidence that home range size is scale dependent in this large browser. Insight into the behavioural responses of populations to climatic stochasticity and forage variability is essential in view of current and future climate change, especially for populations with thermoregulatory restrictions living at the southern limit of their distribution.


Journal of Animal Ecology | 2010

Forage quantity, quality and depletion as scale-dependent mechanisms driving habitat selection of a large browsing herbivore.

Floris M. van Beest; Atle Mysterud; Leif Egil Loe; Jos M. Milner

1. Mechanisms that affect the spatial distribution of animals are typically scale-dependent and may involve forage distribution. Forage quality and quantity are often inversely correlated and a much discussed trade-off is whether or not to select for high-quality forage at the expense of forage abundance. This discussion has rarely involved scale-dependence or been applied to Northern browsing herbivores. At small spatial scales, browsers are assumed to select for the best quality forage. But, as high-quality forage resources are often scarce and may become depleted, coarse-scale habitat selection is assumed to be driven by forage availability. 2. To evaluate if moose selection for forage quantity and quality is scale-dependent we modelled summer and winter habitat selection of 32 GPS-marked female moose (Alces alces) at two spatial scales (landscape-scale vs. within-home range-scale). We used mixed-effects resource selection functions (RSFs) and landscape-scale forage availability models of six tree species of varying quality for moose. We considered silver birch (Betula pendula), downy birch (Betula pubescens.), Scots pine (Pinus sylvestris) as low quality browse species and rowan (Sorbus aucuparia), aspen (Populus tremula), willow (Salix spp.) as high-quality species. 3. As expected, the overall selection patterns for available browse biomass and quality varied across spatiotemporal scales. At the landscape-scale, moose selected for habitat with high available browse biomass of low quality species while at the within-home range-scale moose selected for sites with the highest quality browse species available. Furthermore, selection patterns during summer remained fairly stable, while during winter, selection at the within-home range-scale switched from sites with high quality to sites with lower quality browse species which suggests depletion of high-quality species. Consistent with expectations from seasonal resource depletion, site fidelity (bimonthly home range overlap) was much lower in winter than in summer. 4. Coarse-scale habitat selection by moose as a function of forage variability revealed a scale-dependent trade-off between available browse quantity and browse quality. Moreover, resource depletion changed the winter selection criteria of free-ranging moose and we demonstrate how the behavioural response to such a dynamic process can be inferred from RSFs.


Animal Behaviour | 2012

Temperature-mediated habitat use and selection by a heat-sensitive northern ungulate

Floris M. van Beest; Bram Van Moorter; Jos M. Milner

The behavioural response of animals to unfavourable climatic conditions has received increased attention recently. While many studies have examined the behavioural responses of endotherms to cold temperatures, thermoregulatory behaviour may also occur in response to heat stress. We evaluated whether a heat-sensitive northern ungulate, the moose, Alces alces, showed thermoregulatory behaviour in response to ambient temperature in two populations in southern Norway. We quantified the seasonal habitat use of GPS-collared adult females, as well as fine-scale habitat selection patterns, in relation to time of day and critical temperature thresholds thought to induce heat stress. We also assessed whether temperature-associated changes in spatial behaviour led to a shift in the availability of thermal cover and forage at the chosen location. Frequent exposure to temperatures above critical thresholds occurred in both summer and winter and in both study areas. Moose responded by seeking thermal shelter in mature coniferous forest and avoiding open habitat types, leading to a decrease in local forage availability in summer but not in winter. Differences in habitat choice in response to temperature were most pronounced at twilight. We found that fine-scale habitat selection analyses, using step-selection functions, more effectively revealed thermoregulatory behaviour in both seasons and populations than did habitat use. This is because habitat selection analyses are better able to identify limiting factors operating at different spatiotemporal scales than is habitat use. Our results clearly show that ambient temperature affected fine-scale behavioural decisions of moose with consequences for forage accessibility, especially during summer. As the climate changes, the limiting effect of ambient temperature (cold and high) on animal behaviour is likely to increase, potentially influencing individual fitness and population dynamics. 2012 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.


Journal of Wildlife Management | 2010

Comparative space use and habitat selection of moose around feeding stations.

Floris M. van Beest; Leif Egil Loe; Atle Mysterud; Jos M. Milner

Abstract The practice of feeding cervids in winter, either as a supplement to enhance nutritional status or to divert animals away from roads, railways, or vulnerable habitats, is rising noticeably. Moose (Alces alces) densities in Scandinavia are currently at historically high levels, resulting in amplified damage to economically important young Scots pine (Pinus sylvestris) forest stands. Nevertheless, there is limited information as to how diversionary feeding affects herbivore space use and habitat selection. We followed 32 female moose marked with Global Positioning System collars to evaluate 1) if feeding stations serve as attraction points to the extent that habitat-selection patterns resemble those of central-place foragers (i.e., high usage and more uniform selection close to the attraction point), and 2) if moose using feeding sites select young pine stands less than those not using feeding sites. Moose that used diversionary forage concentrated their space use around feeding stations and selected habitats as predicted for a central-place forager with a decreasing probability of using areas away from feeding sites and a low degree of habitat selectivity close to feeding sites. However, moose that used feeding sites continued to select young pine stands to the same extent as moose that did not use feeding sites. Feeding sites were, therefore, not successful in diverting moose away from valuable natural browse, so we recommend wildlife managers establish feeding sites in sacrifice areas where moose browsing is permissible and, if possible, >1 km from young pine plantations.


PLOS ONE | 2013

Behavioural responses to thermal conditions affect seasonal mass change in a heat-sensitive northern ungulate.

Floris M. van Beest; Jos M. Milner

Background Empirical tests that link temperature-mediated changes in behaviour (activity and resource selection) to individual fitness or condition are currently lacking for endotherms yet may be critical to understanding the effect of climate change on population dynamics. Moose (Alces alces) are thought to suffer from heat stress in all seasons so provide a good biological model to test whether exposure to non-optimal ambient temperatures influence seasonal changes in body mass. Seasonal mass change is an important fitness correlate of large herbivores and affects reproductive success of female moose. Methodology/Principal Findings Using GPS-collared adult female moose from two populations in southern Norway we quantified individual differences in seasonal activity budget and resource selection patterns as a function of seasonal temperatures thought to induce heat stress in moose. Individual body mass was recorded in early and late winter, and autumn to calculate seasonal mass changes (n = 52 over winter, n = 47 over summer). We found large individual differences in temperature-dependent resource selection patterns as well as within and between season variability in thermoregulatory strategies. As expected, individuals using an optimal strategy, selecting young successional forest (foraging habitat) at low ambient temperatures and mature coniferous forest (thermal shelter) during thermally stressful conditions, lost less mass in winter and gained more mass in summer. Conclusions/Significance This study provides evidence that behavioural responses to temperature have important consequences for seasonal mass change in moose living in the south of their distribution in Norway, and may be a contributing factor to recently observed declines in moose demographic performance. Although the mechanisms that underlie the observed temperature mediated habitat-fitness relationship remain to be tested, physiological state and individual variation in thermal tolerance are likely contributory factors. Climate-related effects on animal behaviour, and subsequently fitness, are expected to intensify as global warming continues.


Animal Behaviour | 2011

Activity patterns of predator and prey: a simultaneous study of GPS-collared wolves and moose

Petter Wabakken; Barbara Zimmermann; Harry P. Andreassen; Jon Martin Arnemo; Hege Gundersen; Olof Liberg; John D. C. Linnell; Jos M. Milner; Hans Christian Pedersen; Håkan Sand; Erling Johan Solberg; Torstein Storaas

This is the postprint version of the article published in Animal behaviour. You can find the published article here: http://dx.doi.org/doi:10.1016/j.anbehav.2010.11.011


Oecologia | 2013

Reproductive success and failure: the role of winter body mass in reproductive allocation in Norwegian moose

Jos M. Milner; Floris M. van Beest; Erling Johan Solberg; Torstein Storaas

A life history strategy that favours somatic growth over reproduction is well known for long-lived iteroparous species, especially in unpredictable environments. Risk-sensitive female reproductive allocation can be achieved by a reduced reproductive effort at conception, or the subsequent adjustment of investment during gestation or lactation in response to unexpected environmental conditions or resource availability. We investigated the relative importance of reduced investment at conception compared with later in the reproductive cycle (i.e. prenatal, perinatal or neonatal mortality) in explaining reproductive failure in two high-density moose (Alces alces) populations in southern Norway. We followed 65 multiparous, global positioning system (GPS)-collared females throughout the reproductive cycle and focused on the role of maternal nutrition during gestation in determining reproductive success using a quasi-experimental approach to manipulate winter forage availability. Pregnancy rates in early winter were normal (≥0.8) in all years while spring calving rates ranged from 0.4 to 0.83, with prenatal mortality accounting for most of the difference. Further losses over summer reduced autumn recruitment rates to 0.23–0.69, despite negligible predation. Over-winter mass loss explained variation in both spring calving and autumn recruitment success better than absolute body mass in early or late winter. Although pregnancy was related to body mass in early winter, overall reproductive success was unrelated to pre-winter body condition. We therefore concluded that reproductive success was limited by winter nutritional conditions. However, we could not determine whether the observed reproductive allocation adjustment was a bet-hedging strategy to maximise reproduction without compromising survival or whether females were simply unable to invest more resources in their offspring.


European Journal of Wildlife Research | 2011

Hunting Bambi : evaluating the basis for selective harvesting of juveniles

Jos M. Milner; Christophe Bonenfant; Atle Mysterud

Human harvesting is often a major mortality factor and, hence, an important proximate factor driving the population dynamics of large mammals. Several selective harvesting regimes focus on removing animals with low reproductive value, such as “antlered” harvests in North America and juvenile harvesting in many European countries. Despite its widespread use and assumed impact, the scientific basis of juvenile harvesting is scattered in the literature and not empirically well-documented. We give the first overview of demographic, evolutionary and practical management arguments for selective harvesting of juveniles. Furthermore, we empirically test two demographic arguments based on harvest statistics of Red Deer (Cervus elaphus) in seven European countries. P1: Harvesting juveniles has little influence on harvest growth compared with harvesting adult females due to the lower reproductive value of juveniles than adult females; P2: Harvesting of juveniles dampens variance in harvest due to lower and more variable natural survival rates of juveniles compared with adults. We found that harvesting juveniles has little effect on harvest growth rate, while harvesting adult females has a significant negative effect (consistent with P1), but that increasing the proportion of juveniles in the harvest did not decrease the variability in harvest between years (P2 not supported). Based on our empirical findings and overview of arguments, we discuss how the merits of juvenile harvesting may vary over time as populations move from a low density to a very high density state.


Ecology and Evolution | 2016

Experimental icing affects growth, mortality, and flowering in a high Arctic dwarf shrub

Jos M. Milner; Øystein Varpe; Ren e van der Wal; Brage Bremset Hansen

Abstract Effects of climate change are predicted to be greatest at high latitudes, with more pronounced warming in winter than summer. Extreme mid‐winter warm spells and heavy rain‐on‐snow events are already increasing in frequency in the Arctic, with implications for snow‐pack and ground‐ice formation. These may in turn affect key components of Arctic ecosystems. However, the fitness consequences of extreme winter weather events for tundra plants are not well understood, especially in the high Arctic. We simulated an extreme mid‐winter rain‐on‐snow event at a field site in high Arctic Svalbard (78°N) by experimentally encasing tundra vegetation in ice. After the subsequent growing season, we measured the effects of icing on growth and fitness indices in the common tundra plant, Arctic bell‐heather (Cassiope tetragona). The suitability of this species for retrospective growth analysis enabled us to compare shoot growth in pre and postmanipulation years in icing treatment and control plants, as well as shoot survival and flowering. Plants from icing treatment plots had higher shoot mortality and lower flowering success than controls. At the individual sample level, heavily flowering plants invested less in shoot growth than nonflowering plants, while shoot growth was positively related to the degree of shoot mortality. Therefore, contrary to expectation, undamaged shoots showed enhanced growth in ice treatment plants. This suggests that following damage, aboveground resources were allocated to the few remaining undamaged meristems. The enhanced shoot growth measured in our icing treatment plants has implications for climate studies based on retrospective analyses of Cassiope. As shoot growth in this species responds positively to summer warming, it also highlights a potentially complex interaction between summer and winter conditions. By documenting strong effects of icing on growth and reproduction of a widespread tundra plant, our study contributes to an understanding of Arctic plant responses to projected changes in winter climatic conditions.


Wildlife Biology | 2009

The Role of Ecological and Economic Factors in the Management of a Spatially Structured Moose Alces alces Population

Erlend B. Nilsen; Anders Skonhoft; Atle Mysterud; Jos M. Milner; Erling Johan Solberg; Harry P. Andreassen; Nils Chr

We present a bioeconomic model for moose Alces alces management in Norway, where two sub-populations of moose are subject to different site-specific mortality rates caused by the spatial distribution of territorial wolf Canis lupus packs, and are coupled by the seasonal migration of moose. The costs and benefits of moose are asymmetrically distributed in space, since they congregate in the wolf territory during winter where most browsing damage occurs. Using a class-structured matrix population model as the basis for bioeconomic analysis, we investigated how the optimal moose management differed between a unified (i.e. maximising overall profit) and a non-unified (i.e. profit maximised at the level of individual landowners) management scheme. Within the unified management scheme, the combined marginal costs and benefits decide the optimal off-take rate, and the relative hunting value and damage costs decide the relative allocation of the harvest between the two sub-populations. In the non-unified management scheme, harvesting takes place up to the point where the private marginal hunting value equals the private marginal browsing cost, while the relative hunting value and damage costs do not influence the optimal management. As the browsing damage that occurs inside the wolf territory is not taken into account in the costs of the area outside the territory within the non-unified solution, optimal moose population size will be higher for the outer area than under the unified solution. This results in an overall economic loss, which increases with increasing migration rates. Whenever the boundaries of political or management units do not follow those of ecological processes, ignoring the spatial resolution of the ecological process will result in sub-optimal management of a renewable resource.

Collaboration


Dive into the Jos M. Milner's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Torstein Storaas

Hedmark University College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Erlend B. Nilsen

Hedmark University College

View shared research outputs
Top Co-Authors

Avatar

Hege Gundersen

Norwegian Institute for Water Research

View shared research outputs
Top Co-Authors

Avatar

Petter Wabakken

Hedmark University College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge