Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose A. Acosta is active.

Publication


Featured researches published by Jose A. Acosta.


Environmental Monitoring and Assessment | 2010

Identification of heavy metal sources by multivariable analysis in a typical Mediterranean city (SE Spain)

Jose A. Acosta; A. Faz; Silvia Martínez-Martínez

Problems associated with heavy metal characterization in the majority of sites are often due to multiple sources of pollution. This work presents the results through the use of advanced statistical techniques to identify sources of soil heavy metals in a typical Mediterranean city. The multivariable analysis performed on seven metals identified four sources controlling their variability. Cr, Mn, and Ni contents were associated to soil parent materials; Cd and Pb contents were related to anthropogenic activities, specifically industrial activities and traffic; Cu content is controlled by long-term application of inorganic fertilizers in agricultural areas. Finally, zinc concentration is associated to commercial and outdoor activities in the area. These results were supported by the fact that metals associated to parent material (Cr, Mn, and Ni) were better correlated with soil lithogenic properties, while anthropogenic metals were correlated with more variable soil constituents.


Pedosphere | 2012

Plant Cover and Soil Biochemical Properties in a Mine Tailing Pond Five Years After Application of Marble Wastes and Organic Amendments

R. Zornoza; A. Faz; D.M. Carmona; Silvia Martínez-Martínez; Jose A. Acosta

Abstract Tailing ponds pose environmental hazards, such as toxic metals which can contaminate the surroundings through wind and water erosions and leaching. Various chemical and biochemical properties, together with extractable and soluble metals were measured five years after reclamation of a polluted soil affected by former mining activities. This abandoned mine site contains large amounts of Fe-oxyhydroxides, sulphates, and heavy metals. As a consequence, soils remain bare and the soil organic matter content is low ( −1 ). Marble waste, pig manure and sewage sludge were applied in 2004. Plant cover and richness, and soil chemical, biochemical and biological parameters were analysed five years later. Results showed that all soil biochemical properties as well as vegetation cover and richness were higher in treated soils than in the untreated contaminated plots (control), although organic matter, pH values and extractable metals concentrations were similar among treatments. Soluble cadmium and zinc were lower in the amended plots than in control. As a general pattern, soil amended with pig manure showed higher values of most biochemical properties compared to sewage sludge application, while the doses did not have a great effect, being only significant for β-glucosidase, phosphodiesterase and arylsulfatase. Significant correlations were found between vegetation cover, richness and soil biochemical properties, suggesting a high interdependence between plant colonization and reactivation of biogeochemical cycles during five years. This study confirms the high effectiveness of an initial application of the amendments tested to initialize the recovery of ecosystems in bare mine soils under Mediterranean semiarid conditions. This research also shows the high sensitivity of certain biochemical properties in order to evaluate soil quality and reactivation of nutrients cycles in reclaimed mine soils.


Chemosphere | 2013

Carbon mineralization, microbial activity and metal dynamics in tailing ponds amended with pig slurry and marble waste

R. Zornoza; A. Faz; D.M. Carmona; Jose A. Acosta; Silvia Martínez-Martínez; Arno de Vreng

A field experiment was set up in Cartagena-La Unión Mining District, SE Spain, aimed at evaluating the short-term effects of pig slurry (PS) amendment alone and together with marble waste (MW) on organic matter mineralization, microbial activity and stabilization of heavy metals in two tailing ponds. These structures pose environmental risk owing to high metals contents, low organic matter and nutrients, and null vegetation. Carbon mineralization, exchangeable metals and microbiological properties were monitored during 67 d. The application of amendments led to a rapid decrease of exchangeable metals concentrations, except for Cu, with decreases up to 98%, 75% and 97% for Cd, Pb and Zn, respectively. The combined addition of MW+PS was the treatment with greater reduction in metals concentrations. The addition of PS caused a significant increase in respiration rates, although in MW+PS plots respiration was lower than in PS plots. The mineralized C from the pig slurry was low, approximately 25-30% and 4-12% for PS and MW+PS treatments, respectively. Soluble carbon (Csol), microbial biomass carbon (MBC) and β-galactosidase and β-glucosidase activities increased after the application of the organic amendment. However, after 3d these parameters started a decreasing trend reaching similar values than control from approximately day 25 for Csol and MBC. The PS treatment promoted highest values in enzyme activities, which remained high upon time. Arylesterase activity increased in the MW+PS treatment. Thus, the remediation techniques used improved soil microbiological status and reduced metal availability. The combined application of PS+MW reduced the degradability of the organic compounds.


Journal of Environmental Monitoring | 2011

Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment

Jose A. Acosta; A. Faz; Karsten Kalbitz; Boris Jansen; Silvia Martínez-Martínez

Street dust has been sampled from six different types of land use of the city of Murcia (Spain). The samples were fractionated into eleven particle size fractions (<2, 2-10, 10-20, 20-50, 50-75, 75-106, 106-150, 150-180, 180-425, 425-850 μm and 850-2000 μm) and analyzed for Pb, Cu, Zn and Cd. The concentrations of these four potentially toxic metals were assessed, as well as the effect of particle size on their distribution. A severe enrichment of all metals was observed for all land-uses (industrial, suburban, urban and highways), with the concentration of all metals affected by the type of land-use. Coarse and fine particles in all cases showed concentrations of metals higher than those found in undisturbed areas. However, the results indicated a preferential partitioning of metals in fine particle size fractions in all cases, following a logarithmic distribution. The accumulation in the fine fractions was higher when the metals had an anthropogenic origin. The strong overrepresentation of metals in particles <10 μm indicates that if the finest fractions are removed by a vacuum-assisted dry sweeper or a regenerative-air sweeper the risk of metal dispersion and its consequent risk for humans will be highly reduced. Therefore, we recommend that risk assessment programs include monitoring of metal concentrations in dust where each land-use is separately evaluated. The finest particle fractions should be examined explicitly in order to apply the most efficient measures for reducing the risk of inhalation and ingestion of dust for humans and risk for the environment.


Environmental Pollution | 2013

High altitude artisanal small-scale gold mines are hot spots for Mercury in soils and plants.

Tania A. Terán-Mita; A. Faz; Flor de María Salvador; J. M. Arocena; Jose A. Acosta

Mercury releases from artisanal and small-scale gold mines (ASGM) condense and settle on plants, soils and water bodies. We collected soil and plant samples to add knowledge to the likely transfer of Hg from soils into plants and eventually predict Hg accumulation in livestock around ASGM in Bolivia. Mean contents of Hg in soils range from 0.5 to 48.6 mg Hg kg(-1) soil (5× to 60× more compared to control sites) and exceeded the soil Hg threshold levels in some European countries. The Hg contents ranged from 0.6 to 18 and 0.2 to 28.3 mg Hg kg(-1) leaf and root, respectively. The high Hg in Poaceae and Rosaceae may elevate Hg accumulation into the food chain because llama and alpaca solely thrive on these plants for food. Erosion of soils around ASGM in Bolivia contributes to the Hg contamination in lower reaches of the Amazon basin.


Chemosphere | 2015

Speciation of arsenic in bulk and rhizosphere soils from artisanal cooperative mines in Bolivia.

Jose A. Acosta; J. M. Arocena; A. Faz

Soils near artisanal and small-scale gold mines (ASGM) have high arsenic (As) contents due to the presence of arsenopyrite in gold ores and accelerated accumulations due to mine wastes disposal practices and other mining activities. We determined the content and speciation to understand the fate and environmental risks of As accumulations in 24 bulk and 12 rhizosphere soil samples collected in the Virgen Del Rosario and the Rayo Rojo cooperative mines in the highlands of Bolivia. Mean total As contents in bulk and rhizosphere soils ranged from 13 to 64 mg kg(-1) and exceeded the soil environmental quality guidelines of Canada. Rhizosphere soils always contained at least twice the As contents in the bulk soil. Elemental mapping using 4×5 μm synchrotron-generated X-ray micro-beam revealed As accumulations in areas enriched with Fe. Results of As-X-ray Absorption Near Edge Spectroscopy (As-XANES) showed that only As(V) species was detectable in all samples regardless of As contents, size fractions and types of vegetation. Although the toxicity of As(V) is less than As(III), we suggest that As uptake of commonly-grazed vegetation by alpaca and llama must be determined to fully understand the environmental risks of high As in soils near ASGM in Bolivia. In addition, knowledge on the speciation of the As bio-accessible fraction will provide another useful information to better understand the fate and transfer of As from soils into the food chain in environments associated with the ASGM in Bolivia and other parts of the world.


Journal of Environmental Management | 2016

Biomagnetic monitoring of heavy metals contamination in deposited atmospheric dust, a case study from Isfahan, Iran.

Samira Norouzi; Hossein Khademi; Angel Faz Cano; Jose A. Acosta

Tree leaves are considered as one of the best biogenic dust collectors due to their ability to trap and retain particulate matter on their surfaces. In this study, the magnetic susceptibility (MS) and the concentration of selected heavy metals of plane tree (Platanus orientalis L.) leaves and deposited atmospheric dust, sampled by an indirect and a direct method, respectively, were determined to investigate the relationships between leaf magnetic parameters and the concentration of heavy metals in deposited atmospheric dust. The objective was to develop a biomagnetic method as an alternative to the common ones used for determining atmospheric heavy metal contaminations. Plane tree leaves were monthly sampled on the 19th of May to November, 2012 (T1-T7), for seven months from 21 different sites in the city of Isfahan, central Iran. Deposited atmospheric dust samples were also collected using flat glass surfaces from the same sites on the same dates, except for T1. MS (χlf, χhf) values in washed (WL) and unwashed leaves (UL) as well as Cu, Fe, Mn, Ni, Pb, and Zn concentrations in UL and deposited atmospheric dust samples were determined. The results showed that the MS content with a biogenic source was low with almost no significant change during the sampling period, while an increasing trend was observed in the MS content of UL samples due to the deposition of heavy metals and magnetic particles on leaf surfaces throughout the plant growth. The latter type of MS content could be reduced through washing off by rain. Most heavy metals examined, as well as the Tomlinson pollution load index (PLI) in UL, showed statistically significant correlations with MS values. The correlation between heavy metals content in atmospheric dust deposited on glass surfaces and leaf MS values was significant for Cu, Fe, Pb, and Zn. Moreover, the similarity observed between the spatial distribution maps of leaf MS and deposited atmospheric dust PLI provided convincing evidence regarding the suitability of the biomagnetic approach as a relatively rapid and inexpensive method for identifying highly polluted urban areas with selected heavy metals, especially those subjected to anthropogenic and other traffic related sources.


Environmental Earth Sciences | 2013

Metal content and environmental risk assessment around high-altitude mine sites

María Ángeles Muñoz; A. Faz; Jose A. Acosta; Silvia Martínez-Martínez; J. M. Arocena

Gold mining activities in Apolobamba area, northwest of La Paz, Bolivia have created serious environmental concern and great risk to human health. The current methods used to extract gold are too primitive resulting in metal contamination of soil and water. The objectives of this study were to: (1) determine the degree of metal pollution, and (2) assess the risk to human health and environment in the Apolobamba area. Soil, water, sediment samples, and mine spills were collected and analyzed. Metals including Pb, Cu, Zn, Cd, and Hg concentrations were higher in surface soils than in subsurface soils indicating active atmospheric deposition of metals. Sediment samples had elevated levels of metals probably from mine spills discharged into the Sunchulli River. Surface soils in the Sunchulli community show the highest levels of Pb and Hg in all soil samples and may pose a risk to the health of the human population and environment.


Environmental Earth Sciences | 2017

Effect of different industrial activities on heavy metal concentrations and chemical distribution in topsoil and road dust

M. Gabarrón; A. Faz; Jose A. Acosta

Abstract The development of industrial activity in recent years has promoted the pollution in this environment causing health problems to workers and the neighbourhood nearby. In order to determine the influence of different industrial activities in metals concentration and behaviour in soil and road dust, samples from three different industrial areas (service industry; refinery, fertilizer and power industry; and tannery industry) and a natural area were collected. Physical–chemical properties, metal content (Pb, Zn, Cu, Cr, Co, Ni) and the chemical distribution of metals were carried out. Results show largest accumulation of metals in road dusts samples for all industrial areas, being Zn, Pb, Cr and Cu the metals with highest concentrations. Each industrial activity contributes differently to the concentration of metals in soil and dust, and the highest concentrations of Cr were found from tannery industries, while Pb and Zn showed the highest concentration from refinery and fertilizer industry. It has been showed that industrial activity has influence on the physicochemical properties of soil and road dust and on the bioavailability of all metals. Chemical partitioning indicates that Pb, Zn, Cu and Cr distribution in the different solid phases is affected by industrial activity, while Co and Ni distribution is not affected by the industrial activity.


Environmental Earth Sciences | 2014

Metals and metalloids in primary gold mining districts of Western Bolivia: anthropogenic and natural sources

A. Faz; R. Zornoza; M. Ángeles Muñoz; Jose A. Acosta

Topsoil and subsoil samples located adjacent and distant from the mining operations sites were collected. Most total metals showed no significant differences between topsoil and subsoil or proximity, suggesting that they derive from endogenous parent material. There was an increment in Hg in topsoils adjacent to the mining operation sites, indicating a deposition of Hg from the amalgamation areas. Higher values of total, extractable and soluble As were observed adjacent to the mining operation sites, probably related to the presence of residues, rich in arsenopyrite. Organic matter and clay contents control the concentrations of EDTA-extractable Cd and Zn, while soil acidity was associated with the behaviour of As, Hg and Cu. In contrast the concentration of EDTA-extractable Pb was directly affected by its total concentration. In general, soluble metals were highly independent, without significant correlations with any soil physical and chemical properties.

Collaboration


Dive into the Jose A. Acosta's collaboration.

Top Co-Authors

Avatar

A. Faz

University of Cartagena

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Zornoza

University of Cartagena

View shared research outputs
Top Co-Authors

Avatar

D.M. Carmona

Pontifical Bolivarian University

View shared research outputs
Top Co-Authors

Avatar

J. M. Arocena

University of Northern British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sebla Kabas

University of Cartagena

View shared research outputs
Top Co-Authors

Avatar

Raul Zornoza

Chapingo Autonomous University

View shared research outputs
Top Co-Authors

Avatar

A. Faz Cano

University of Cartagena

View shared research outputs
Top Co-Authors

Avatar

A. Zanuzzi

University of Cartagena

View shared research outputs
Researchain Logo
Decentralizing Knowledge