Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José A. Alves is active.

Publication


Featured researches published by José A. Alves.


Proceedings of the Royal Society of London B: Biological Sciences | 2013

Why is timing of bird migration advancing when individuals are not

Jennifer A. Gill; José A. Alves; William J. Sutherland; Graham F. Appleton; Peter M. Potts; Tómas G. Gunnarsson

Recent advances in spring arrival dates have been reported in many migratory species but the mechanism driving these advances is unknown. As population declines are most widely reported in species that are not advancing migration, there is an urgent need to identify the mechanisms facilitating and constraining these advances. Individual plasticity in timing of migration in response to changing climatic conditions is commonly proposed to drive these advances but plasticity in individual migratory timings is rarely observed. For a shorebird population that has significantly advanced migration in recent decades, we show that individual arrival dates are highly consistent between years, but that the arrival dates of new recruits to the population are significantly earlier now than in previous years. Several mechanisms could drive advances in recruit arrival, none of which require individual plasticity or rapid evolution of migration timings. In particular, advances in nest-laying dates could result in advanced recruit arrival, if benefits of early hatching facilitate early subsequent spring migration. This mechanism could also explain why arrival dates of short-distance migrants, which generally return to breeding sites earlier and have greater scope for advance laying, are advancing more rapidly than long-distance migrants.


Ecology | 2013

Costs, benefits, and fitness consequences of different migratory strategies

José A. Alves; Tómas G. Gunnarsson; Daniel B. Hayhow; Graham F. Appleton; Peter M. Potts; William J. Sutherland; Jennifer A. Gill

The relative fitness of individuals across a population can shape distributions and drive population growth rates. Migratory species often winter over large geographic ranges, and individuals in different locations experience very different environmental conditions, including different migration costs, which can potentially create fitness inequalities. Here we used energetics models to quantify the trade-offs experienced by a migratory shorebird species at locations throughout the nonbreeding range, and the associated consequences for migratory performance, survival, and breeding habitat quality. Individuals experiencing more favorable winter conditions had higher survival rates, arrived on the breeding grounds earlier, and occupied better quality breeding areas, even when migration costs are substantially higher, than individuals from locations where the energy balance on the wintering grounds was less favorable. The energy costs and benefits of occupying different winter locations can therefore create fitness inequalities which can shape the distribution and population-wide demography of migratory species.


Movement ecology | 2014

Continental-scale radar monitoring of the aerial movements of animals

Judy Shamoun-Baranes; José A. Alves; Silke Bauer; Adriaan M. Dokter; Ommo Hüppop; Jarmo Koistinen; H. Leijnse; Felix Liechti; Hans van Gasteren; Jason W. Chapman

Billions of organisms travel through the air, influencing population dynamics, community interactions, ecosystem services and our lives in many different ways. Yet monitoring these movements are technically very challenging. During the last few decades, radars have increasingly been used to study the aerial movements of birds, bats and insects, yet research efforts have often been local and uncoordinated between research groups. However, a network of operational weather radars is continuously recording atmospheric conditions all over Europe and these hold enormous potential for coordinated, continental-scale studies of the aerial movements of animals.The European Network for the Radar surveillance of Animal Movement (ENRAM) is a new e-COST research network aiming exactly at exploring this potential. The main objective of ENRAM is to merge expertise to utilize weather radars to monitor the aerial movement of animals across Europe for a broad range of stakeholders at an unprecedented scale and enable researchers to study the causes and consequences of movement. In this paper we describe the aims of ENRAM in more detail and the challenges researchers will address, provide an overview of aero-ecological studies using radar, and present some of the opportunities that a large sensor network can provide for movement ecology research.


Ecology and Evolution | 2013

Sex-biases in distribution and resource use at different spatial scales in a migratory shorebird

José A. Alves; Tómas G. Gunnarsson; Peter M. Potts; William J. Sutherland; Jennifer A. Gill

In migratory species, sexual size dimorphism can mean differing energetic requirements for males and females. Differences in the costs of migration and in the environmental conditions occurring throughout the range may therefore result in sex-biases in distribution and resource use at different spatial scales. In order to identify the scale at which sexual segregation operates, and thus the scale at which environmental changes may have sex-biased impacts, we use range-wide tracking of individually color-ringed Icelandic black-tailed godwits (Limosa limosa islandica) to quantify sexual segregation at scales ranging from the occupation of sites throughout the non-breeding range to within-site differences in distribution and resource use. Throughout the range of this migratory shorebird, there is no evidence of large-scale sex differences in distribution during the non-breeding season. However, the sexes differ in their selection of prey types and sizes, which results in small-scale sexual segregation within estuaries. The scale of sexual segregation therefore depends on the scale of variation in resource distribution, which, in this system, is primarily within estuaries. Sexual segregation in within-site distribution and resource use means that local-scale anthropogenic impacts on estuarine benthic prey communities may disproportionately affect the sexes in these migratory shorebirds.


Bird Conservation International | 2011

Long-term declines of wader populations at the Tagus estuary, Portugal : a response to global or local factors?

Teresa Catry; José A. Alves; Joana Andrade; Helder Costa; Maria P. Dias; Pedro Fernandes; Ana I. Leal; Pedro M. Lourenço; Ricardo Martins; Filipe Moniz; Sara Pardal; Afonso D. Rocha; Carlos Santos; Vitor Encarnação; José P. Granadeiro

Summary Migratory wader populations face global threats, mainly related to increasing rates of habitat loss and disturbance driven by human activities. To a large extent, the long-term survival of these populations requires the conservation of networks of sites along their migratory flyways. The Tagus estuary, Portugal, is among the most important wetlands for waders in the East Atlantic Flyway. Annual winter wader counts have been carried in this wetland since 1975 and a monthly roost-monitoring programme was implemented in 2007. Wintering populations of three out of the five most abundant species, Dunlin Calidris alpina, Grey Plover Pluvialis squatarola and Redshank Tringa totanus, showed significant population declines over the past three decades, which are most likely due to the loss and degradation of roost sites as a result of increasing human activity. The situation is unlikely to improve, as a high proportion of the wintering waders use roost sites that are situated in highly urbanised areas with no legal protection. The use of different roost sites by waders is highly variable both temporally and spatially, thus emphasizing the need for a network of good quality roost sites. Additionally, during migration, 60–80% of all the waders of the Tagus estuary concentrate at a single refuge, thus increasing the risk for wader populations during these periods.


Nature | 2016

Unexpected diversity in socially synchronized rhythms of shorebirds

Martin Bulla; Mihai Valcu; Adriaan M. Dokter; Alexei G. Dondua; András Kosztolányi; Anne L. Rutten; Barbara Helm; Brett K. Sandercock; Bruce Casler; Bruno J. Ens; Caleb S. Spiegel; Chris J. Hassell; Clemens Küpper; Clive Minton; Daniel Burgas; David B. Lank; David C. Payer; Egor Y. Loktionov; Erica Nol; Eunbi Kwon; Fletcher M. Smith; H. River Gates; Hana Vitnerová; Hanna Prüter; James A. Johnson; James J. H. St Clair; Jean-François Lamarre; Jennie Rausch; Jeroen Reneerkens; Jesse R. Conklin

The behavioural rhythms of organisms are thought to be under strong selection, influenced by the rhythmicity of the environment. Such behavioural rhythms are well studied in isolated individuals under laboratory conditions, but free-living individuals have to temporally synchronize their activities with those of others, including potential mates, competitors, prey and predators. Individuals can temporally segregate their daily activities (for example, prey avoiding predators, subordinates avoiding dominants) or synchronize their activities (for example, group foraging, communal defence, pairs reproducing or caring for offspring). The behavioural rhythms that emerge from such social synchronization and the underlying evolutionary and ecological drivers that shape them remain poorly understood. Here we investigate these rhythms in the context of biparental care, a particularly sensitive phase of social synchronization where pair members potentially compromise their individual rhythms. Using data from 729 nests of 91 populations of 32 biparentally incubating shorebird species, where parents synchronize to achieve continuous coverage of developing eggs, we report remarkable within- and between-species diversity in incubation rhythms. Between species, the median length of one parent’s incubation bout varied from 1–19 h, whereas period length—the time in which a parent’s probability to incubate cycles once between its highest and lowest value—varied from 6–43 h. The length of incubation bouts was unrelated to variables reflecting energetic demands, but species relying on crypsis (the ability to avoid detection by other animals) had longer incubation bouts than those that are readily visible or who actively protect their nest against predators. Rhythms entrainable to the 24-h light–dark cycle were less prevalent at high latitudes and absent in 18 species. Our results indicate that even under similar environmental conditions and despite 24-h environmental cues, social synchronization can generate far more diverse behavioural rhythms than expected from studies of individuals in captivity. The risk of predation, not the risk of starvation, may be a key factor underlying the diversity in these rhythms.


Ardea | 2010

Phenology, Stopover Dynamics and Population Size of Migrating Black-Tailed Godwits Limosa Limosa Limosa in Portuguese Rice Plantations

Pedro M. Lourenço; Rosemarie Kentie; Julia Schroeder; José A. Alves; Niko M. Groen; Jos C.E.W. Hooijmeijer; Theunis Piersma

Between 2005/06 and 2008/09 we studied Black-tailed Godwits Limosa I. limosa staging in the rice fields surrounding the Tejo and Sado estuaries, Portugal. Godwits were counted weekly and flocks were scanned for colour-ringed individuals. We analysed phenology, dynamics of the stopover, and estimated the size of the Portuguese staging population as well as the total western limosa population, Godwits started arriving in January. Numbers peaked in the second half of February, after which they quickly departed from the area. Comparison with previous records suggested that numbers have decreased since the early 1990s, and that godwits currently peak later than some 15 years ago. Individual staging durations averaged 22.6 days in 2007 and 25.3 days in 2009, and increased towards the end of the staging period. We estimated that a total 59 200 birds used the area in 2007 and 53 100 in 2009. Using estimates for the proportion of colour-ringed birds in the flocks, we estimated the population size of the western part of the L. l. limosa population at 133 151–140 722 birds. This is higher than previous estimates based on inventories of the breeding population, but accounts for the non-breeding segment of the population. Thus, we estimate that 38–44% of the NW European Black-tailed Godwit population stage in Portugal. It is argued that processes in Iberia are not likely to have contributed to the population decline as the area for rice cultivation has increased. Nevertheless, as godwits staging in Iberia are totally dependent on human-made habitats, changes in rice farming practices could have great impact on the total population size.


Proceedings of the Royal Society of London B: Biological Sciences | 2012

Rapid changes in phenotype distribution during range expansion in a migratory bird

Tómas G. Gunnarsson; William J. Sutherland; José A. Alves; Peter M. Potts; Jennifer A. Gill

The capacity of species to track changing environmental conditions is a key component of population and range changes in response to environmental change. High levels of local adaptation may constrain expansion into new locations, while the relative fitness of dispersing individuals will influence subsequent population growth. However, opportunities to explore such processes are rare, particularly at scales relevant to species-based conservation strategies. Icelandic black-tailed godwits, Limosa limosa islandica, have expanded their range throughout Iceland over the last century. We show that current male morphology varies strongly in relation to the timing of colonization across Iceland, with small males being absent from recently occupied areas. Smaller males are also proportionately more abundant on habitats and sites with higher breeding success and relative abundance of females. This population-wide spatial structuring of male morphology is most likely to result from female preferences for small males and better-quality habitats increasing both small-male fitness and the dispersal probability of larger males into poorer-quality habitats. Such eco-evolutionary feedbacks may be a key driver of rates of population growth and range expansion and contraction.


PLOS ONE | 2012

Sex Promotes Spatial and Dietary Segregation in a Migratory Shorebird during the Non-Breeding Season

Teresa Catry; José A. Alves; Jennifer A. Gill; Tómas G. Gunnarsson; José P. Granadeiro

Several expressions of sexual segregation have been described in animals, especially in those exhibiting conspicuous dimorphism. Outside the breeding season, segregation has been mostly attributed to size or age-mediated dominance or to trophic niche divergence. Regardless of the recognized implications for population dynamics, the ecological causes and consequences of sexual segregation are still poorly understood. We investigate the foraging habits of a shorebird showing reversed sexual dimorphism, the black-tailed godwit Limosa limosa, during the winter season, and found extensive segregation between sexes in spatial distribution, microhabitat use and dietary composition. Males and females exhibited high site-fidelity but differed in their distributions at estuary-scale. Male godwits (shorter-billed) foraged more frequently in exposed mudflats than in patches with higher water levels, and consumed more bivalves and gastropods and fewer polychaetes than females. Females tended to be more frequently involved and to win more aggressive interactions than males. However, the number of aggressions recorded was low, suggesting that sexual dominance plays a lesser role in segregation, although its importance cannot be ruled out. Dimorphism in the feeding apparatus has been used to explain sex differences in foraging ecology and behaviour of many avian species, but few studies confirmed that morphologic characteristics drive individual differences within each sex. We found a relationship between resource use and bill size when pooling data from males and females. However, this relationship did not hold for either sex separately, suggesting that differences in foraging habits of godwits are primarily a function of sex, rather than bill size. Hence, the exact mechanisms through which this segregation operates are still unknown. The recorded differences in spatial distribution and resource use might expose male and female to distinct threats, thus affecting population dynamics through differential mortality. Therefore, population models and effective conservation strategies should increasingly take sex-specific requirements into consideration.


Bird Study | 2010

Population overlap and habitat segregation in wintering Black-tailed Godwits Limosa limosa

José A. Alves; Pedro M. Lourenço; Theunis Piersma; William J. Sutherland; Jennifer A. Gill

Capsule Distinct breeding populations of migratory species may overlap both spatially and temporally, but differ in patterns of habitat use. This has important implications for population monitoring and conservation. Aims To quantify the extent to which two distinct breeding populations of a migratory shorebird, the Black‐tailed Godwit Limosa limosa, overlap spatially, temporally and in their use of different habitats during winter. Methods We use mid‐winter counts between 1990 and 2001 to identify the most important sites in Iberia for Black‐tailed Godwits. Monthly surveys of estuarine mudflats and rice‐fields at one major site, the Tejo estuary in Portugal in 2005–2007, together with detailed tracking of colour‐ringed individuals, are used to explore patterns of habitat use and segregation of the Icelandic subspecies L. l. islandica and the nominate continental subspecies L. l. limosa. Results In the period 1990–2001, over 66 000 Black‐tailed Godwits were counted on average in Iberia during mid‐winter (January), of which 80% occurred at just four sites: Tejo and Sado lower basins in Portugal, and Coto Doñana and Ebro Delta in Spain. Icelandic Black‐tailed Godwits are present throughout the winter and forage primarily in estuarine habitats. Continental Black‐tailed Godwits are present from December to March and primarily use rice‐fields. Conclusions Iberia supports about 30% of the Icelandic population in winter and most of the continental population during spring passage. While the Icelandic population is currently increasing, the continental population is declining rapidly. Although the estuarine habitats used by Icelandic godwits are largely protected as Natura 2000 sites, the habitat segregation means that conservation actions for the decreasing numbers of continental godwits should focus on protection of rice‐fields and re‐establishment of freshwater wetlands.

Collaboration


Dive into the José A. Alves's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter M. Potts

University of East Anglia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge