Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose A. Chavez is active.

Publication


Featured researches published by Jose A. Chavez.


Cell Metabolism | 2012

A Ceramide-Centric View of Insulin Resistance

Jose A. Chavez; Scott A. Summers

The recent implementation of genomic and lipidomic approaches has produced a large body of evidence implicating the sphingolipid ceramide in a diverse range of physiological processes and as a critical modulator of cellular stress. In this review, we discuss from a historical perspective the most important discoveries produced over the last decade supporting a role for ceramide and its metabolites in the pathogenesis of insulin resistance and other obesity-associated metabolic diseases. Moreover, we describe how a ceramide-centric view of insulin resistance might be reconciled in the context of other prominent models of nutrient-induced insulin resistance.


Biochemical Journal | 2007

Substrate specificity and effect on GLUT4 translocation of the Rab GTPase-activating protein Tbc1d1

William G. Roach; Jose A. Chavez; Cristinel P. Miinea; Gustav E. Lienhard

Insulin stimulation of the trafficking of the glucose transporter GLUT4 to the plasma membrane is controlled in part by the phosphorylation of the Rab GAP (GTPase-activating protein) AS160 (also known as Tbc1d4). Considerable evidence indicates that the phosphorylation of this protein by Akt (protein kinase B) leads to suppression of its GAP activity and results in the elevation of the GTP form of a critical Rab. The present study examines a similar Rab GAP, Tbc1d1, about which very little is known. We found that the Rab specificity of the Tbc1d1 GAP domain is identical with that of AS160. Ectopic expression of Tbc1d1 in 3T3-L1 adipocytes blocked insulin-stimulated GLUT4 translocation to the plasma membrane, whereas a point mutant with an inactive GAP domain had no effect. Insulin treatment led to the phosphorylation of Tbc1d1 on an Akt site that is conserved between Tbc1d1 and AS160. These results show that Tbc1d1 regulates GLUT4 translocation through its GAP activity, and is a likely Akt substrate. An allele of Tbc1d1 in which Arg(125) is replaced by tryptophan has very recently been implicated in susceptibility to obesity by genetic analysis. We found that this form of Tbc1d1 also inhibited GLUT4 translocation and that this effect also required a functional GAP domain.


Biochimica et Biophysica Acta | 2010

Lipid oversupply, selective insulin resistance, and lipotoxicity: molecular mechanisms.

Jose A. Chavez; Scott A. Summers

The accumulation of fat in tissues not suited for lipid storage has deleterious consequences on organ function, leading to cellular damage that underlies diabetes, heart disease, and hypertension. To combat these lipotoxic events, several therapeutics improve insulin sensitivity and/or ameliorate features of metabolic disease by limiting the inappropriate deposition of fat in peripheral tissues (i.e. thiazolidinediones, metformin, and statins). Recent advances in genomics and lipidomics have accelerated progress towards understanding the pathogenic events associated with the excessive production, underutilization, or inefficient storage of fat. Herein we review studies applying pharmacological or genetic strategies to manipulate the expression or activity of enzymes controlling lipid deposition, in order to gain a clearer understanding of the molecular mechanisms by which fatty acids contribute to metabolic disease.


Journal of Biological Chemistry | 2008

Inhibition of GLUT4 Translocation by Tbc1d1, a Rab GTPase-activating Protein Abundant in Skeletal Muscle, Is Partially Relieved by AMP-activated Protein Kinase Activation

Jose A. Chavez; William G. Roach; Susanna R. Keller; William S. Lane; Gustav E. Lienhard

Insulin increases glucose transport by stimulating the trafficking of intracellular GLUT4 to the cell surface, a process known as GLUT4 translocation. A key protein in signaling this process is AS160, a Rab GTPase-activating protein (GAP) whose activity appears to be suppressed by Akt phosphorylation. Tbc1d1 is a Rab GAP with a sequence highly similar to that of AS160 and with the same Rab specificity as that of AS160. The role of Tbc1d1 in regulating GLUT4 trafficking has been unclear. Our previous study showed that overexpressed Tbc1d1 inhibited insulin-stimulated GLUT4 translocation in 3T3-L1 adipocytes, even though insulin caused phosphorylation on its single canonical Akt motif. In the present study, we show in 3T3-L1 adipocytes that Tbc1d1 is only 1/20 as abundant as AS160, that knockdown of Tbc1d1 has no effect on insulin-stimulated GLUT4 translocation, and that overexpressed Tbc1d1 also inhibits GLUT4 translocation elicited by activated Akt expression. These results indicate that endogenous Tbc1d1 does not participate in insulin-regulated GLUT4 translocation in adipocytes and suggest that the GAP activity of Tbc1d1 is not suppressed by Akt phosphorylation. In addition, we discovered that Tbc1d1 is much more highly expressed in skeletal muscle than fat and that the AMP-activated protein kinase (AMPK) activator 5′-aminoimidazole-4-carboxamide ribonucleoside partially reversed the inhibition of insulin-stimulated GLUT4 translocation by overexpressed Tbc1d1 in 3T3-L1 adipocytes. 5′-Aminoimidazole-4-carboxamide ribonucleoside activation of the kinase AMPK is known to cause GLUT4 translocation in muscle. The above findings strongly suggest that Tbc1d1 is a component in the signal transduction pathway leading to AMPK-stimulated GLUT4 translocation in muscle.


Journal of Biological Chemistry | 2009

Insulin-stimulated Phosphorylation of the Rab GTPase-activating Protein TBC1D1 Regulates GLUT4 Translocation

Grantley R. Peck; Jose A. Chavez; William G. Roach; Bogdan Budnik; William S. Lane; Håkan Karlsson; Juleen R. Zierath; Gustav E. Lienhard

Insulin stimulates the translocation of the glucose transporter GLUT4 from intracellular locations to the plasma membrane in adipose and muscle cells. Prior studies have shown that Akt phosphorylation of the Rab GTPase-activating protein, AS160 (160-kDa Akt substrate; also known as TBC1D4), triggers GLUT4 translocation, most likely by suppressing its Rab GTPase-activating protein activity. However, the regulation of a very similar protein, TBC1D1 (TBC domain family, member 1), which is mainly found in muscle, in insulin-stimulated GLUT4 translocation has been unclear. In the present study, we have identified likely Akt sites of insulin-stimulated phosphorylation of TBC1D1 in C2C12 myotubes. We show that a mutant of TBC1D1, in which several Akt sites have been converted to alanine, is considerably more inhibitory to insulin-stimulated GLUT4 translocation than wild-type TBC1D1. This result thus indicates that similar to AS160, Akt phosphorylation of TBC1D1 enables GLUT4 translocation. We also show that in addition to Akt activation, activation of the AMP-dependent protein kinase partially relieves the inhibition of GLUT4 translocation by TBC1D1. Finally, we show that the R125W variant of TBC1D1, which has been genetically associated with obesity, is equally inhibitory to insulin-stimulated GLUT4 translocation, as is wild-type TBC1D1, and that healthy and type 2 diabetic individuals express approximately the same level of TBC1D1 in biopsies of vastus lateralis muscle. In conclusion, phosphorylation of TBC1D1 is required for GLUT4 translocation. Thus, the regulation of TBC1D1 resembles that of its paralog, AS160.


Journal of Biological Chemistry | 2014

Ceramides and Glucosylceramides Are Independent Antagonists of Insulin Signaling

Jose A. Chavez; Monowarul M. Siddique; Siew Tein Wang; Jianhong Ching; James A. Shayman; Scott A. Summers

Background: Both ceramides and glucosylceramides have been implicated in the pathogenesis of insulin resistance. Results: These two classes of sphingolipids modulate insulin action but differ by both tissue specificity and mechanism of action. Conclusion: Ceramides and glucosylceramides are independent and separable antagonists of insulin signaling. Significance: These observations will contribute to our understanding of how sphingolipids contribute to obesity-related metabolic diseases. Inhibitors of sphingolipid synthesis protect mice from diet induced-insulin resistance, and sphingolipids such as ceramides and glucosylated-ceramides (e.g., GM3) are putative nutritional intermediates linking obesity to diabetes risk. Herein we investigated the role of each of these sphingolipids in muscle and adipose tissue and conclude that they are independent and separable antagonists of insulin signaling. Of particular note, ceramides antagonize insulin signaling in both myotubes and adipocytes, whereas glucosyceramides are only efficacious in adipocytes: 1) In myotubes exposed to saturated fats, inhibitors of enzymes required for ceramide synthesis enhance insulin signaling, but those targeting glucosylceramide synthase have no effect. 2) Exogenous ceramides antagonize insulin signaling in myotubes, whereas ganglioside precursors do not. 3) Overexpression of glucosylceramide synthase in myotubes induces glucosylceramide but enhances insulin signaling. In contrast, glucosylated ceramides have profound effects in adipocytes. For example, either ganglioside addition or human glucosylceramide synthase overexpression suppresses insulin signaling in adipocytes. These data have important mechanistic implications for understanding how these sphingolipids contribute to energy sensing and the disruption of anabolism under conditions of nutrient oversupply.


Journal of Biological Chemistry | 2010

Gating of a G protein-sensitive Mammalian Kir3.1 Prokaryotic Kir Channel Chimera in Planar Lipid Bilayers

Edgar Leal-Pinto; Yacob Gómez-Llorente; Shobana Sundaram; Qiong-Yao Tang; Tatyana T. Ivanova-Nikolova; Rahul Mahajan; Lia Baki; Zhe Zhang; Jose A. Chavez; Iban Ubarretxena-Belandia; Diomedes E. Logothetis

Kir3 channels control heart rate and neuronal excitability through GTP-binding (G) protein and phosphoinositide signaling pathways. These channels were the first characterized effectors of the βγ subunits of G proteins. Because we currently lack structures of complexes between G proteins and Kir3 channels, their interactions leading to modulation of channel function are not well understood. The recent crystal structure of a chimera between the cytosolic domain of a mammalian Kir3.1 and the transmembrane region of a prokaryotic KirBac1.3 (Kir3.1 chimera) has provided invaluable structural insight. However, it was not known whether this chimera could form functional K+ channels. Here, we achieved the functional reconstitution of purified Kir3.1 chimera in planar lipid bilayers. The chimera behaved like a bona fide Kir channel displaying an absolute requirement for PIP2 and Mg2+-dependent inward rectification. The channel could also be blocked by external tertiapin Q. The three-dimensional reconstruction of the chimera by single particle electron microscopy revealed a structure consistent with the crystal structure. Channel activity could be stimulated by ethanol and activated G proteins. Remarkably, the presence of both activated Gα and Gβγ subunits was required for gating of the channel. These results confirm the Kir3.1 chimera as a valid structural and functional model of Kir3 channels.


PLOS ONE | 2010

Identification of an Archaeal Presenilin-Like Intramembrane Protease

Celia Torres-Arancivia; Carolyn M. Ross; Jose A. Chavez; Zahra Assur; Georgia Dolios; Filippo Mancia; Iban Ubarretxena-Belandia

Background The GXGD-type diaspartyl intramembrane protease, presenilin, constitutes the catalytic core of the γ-secretase multi-protein complex responsible for activating critical signaling cascades during development and for the production of β-amyloid peptides (Aβ) implicated in Alzheimers disease. The only other known GXGD-type diaspartyl intramembrane proteases are the eukaryotic signal peptide peptidases (SPPs). The presence of presenilin-like enzymes outside eukaryots has not been demonstrated. Here we report the existence of presenilin-like GXGD-type diaspartyl intramembrane proteases in archaea. Methodology and Principal Findings We have employed in vitro activity assays to show that MCMJR1, a polytopic membrane protein from the archaeon Methanoculleus marisnigri JR1, is an intramembrane protease bearing the signature YD and GXGD catalytic motifs of presenilin-like enzymes. Mass spectrometry analysis showed MCMJR1 could cleave model intramembrane protease substrates at several sites within their transmembrane region. Remarkably, MCMJR1 could also cleave substrates derived from the β-amyloid precursor protein (APP) without the need of protein co-factors, as required by presenilin. Two distinct cleavage sites within the transmembrane domain of APP could be identified, one of which coincided with Aβ40, the predominant site processed by γ-secretase. Finally, an established presenilin and SPP transition-state analog inhibitor could inhibit MCMJR1. Conclusions and Significance Our findings suggest that a primitive GXGD-type diaspartyl intramembrane protease from archaea can recapitulate key biochemical properties of eukaryotic presenilins and SPPs. MCMJR1 promises to be a more tractable, simpler system for in depth structural and mechanistic studies of GXGD-type diaspartyl intramembrane proteases.


Biochemical Journal | 2005

Effect of a membrane-targeted sphingosine kinase 1 on cell proliferation and survival

Farida Safadi-Chamberlain; Liping Wang; Shawn G. Payne; Chang-Uk Lim; Suzanne Stratford; Jose A. Chavez; Michael H. Fox; Sarah Spiegel; Scott A. Summers

Numerous extracellular stimuli activate SK1 (sphingosine kinase type 1) to catalyse the production of sphingosine 1-phosphate, a bioactive lipid that functions as both an extracellular ligand for a family of G-protein-linked receptors and as a putative intracellular messenger. Phorbol esters, calcium or immunoglobulin receptors stimulate SK1 by promoting its translocation to the plasma membrane, which brings it into proximity both to its substrate (i.e. sphingosine) and to activating acidic phospholipids (e.g. phosphatidylserine). To evaluate the consequence of SK translocation, we generated an SK1-derivative tagged with a myristoylation sequence (Myr-SK1) on its N-terminus and overexpressed the construct in 3T3-L1 fibroblasts using recombinant retrovirus. Myr-SK1 overexpression increased SK activity by more than 50-fold in crude membranes, while only stimulating cytoplasmic SK activity by 4-fold. In contrast, the overexpression of WT-SK1 (wild-type SK1), as well as that of a construct containing a false myristoylation sequence (A2-Myr-SK1), markedly increased SK activity in both membrane and cytoplasmic compartments. Immunofluorescence confirmed that Myr-SK1 preferentially localized at the plasma membrane, whereas WT-SK1 and A2-Myr-SK1 partitioned in cytoplasmic/perinuclear cellular regions. Surprisingly, Myr-SK1 overexpression significantly decreased the rates of cell proliferation by delaying exit from G0/G1 phase. Moreover, expression of Myr-SK1 but not WT-SK1 or A2-Myr-SK1 protected cells from apoptosis induced by serum withdrawal. Collectively, these findings reveal that altering the subcellular location of SK1 has marked effects on cell function, with plasma membrane-associated SK having a potent inhibitory effect on the G1-S phase transition.


BMC Proceedings | 2012

Ceramides and glucosylceramides are independent antagonists of insulin action

Jose A. Chavez; Siew Tein Wang; Puck Wee Chan; Scott A. Summers

Ceramides and glucosylceramides (GCs) have both been implicated in the development of insulin resistance and the pathogenesis of metabolic diseases associated with obesity. Inhibitors of either ceramide or glucosylceramide production enhance insulin signaling in adipocytes and protect mice from high-fat diet induced-insulin resistance, diabetes, and hepatic steatosis. Moreover, the addition of either ceramides or glucosylceramides to 3T3-L1 adipocytes impairs insulin signaling. Since inhibitors of ceramide biosynthesis deplete cells of glucosylceramides, and since exogenous ceramides can be reglucosylated to produce glucosylceramides, it remains a formal possibility that glucosylated ceramides, and not ceramides themselves, antagonize insulin action. In the present work, we present evidence revealing that glucosylceramides and ceramides are independent and separable antagonists of insulin signaling. The conclusion derives from the fact the two sphingolipids have differential effects on insulin signaling to Akt/PKB in cultured myotubes, but have comparable effects on insulin signaling to Akt/PKB in adipocytes. First, though inhibitors of ceramide biosynthesis prevent the antagonism of insulin signaling by saturated fatty acids in C2C12 myotubes, inhibitors of glucosylceramide synthase (GCS) have no effect. Second, incubation of C2C12 myotubes with exogenous ceramides antagonizes insulin signaling, while the addition of the ganglioside GM3 does not. And third, adenovirus-mediated overexpression of human GCS (hGCS) in myotubes protects cells from palmitateinduced inhibition of insulin signaling. In contrast, increasing glucosylated ceramide levels in 3T3-L1 adipocytes has profound effects. For example, both GM3 addition or hGCS overexpression downregulates insulin signaling in that cell type. These observations reveal that both glucosylceramides only induce insulin resistance in a subset of cell types, and confirm that both glucosylceramides and ceramides are independent antagonists of insulin action.

Collaboration


Dive into the Jose A. Chavez's collaboration.

Top Co-Authors

Avatar

Scott A. Summers

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Iban Ubarretxena-Belandia

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diomedes E. Logothetis

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

Edgar Leal-Pinto

Icahn School of Medicine at Mount Sinai

View shared research outputs
Researchain Logo
Decentralizing Knowledge