Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José A. Heredia-Guerrero is active.

Publication


Featured researches published by José A. Heredia-Guerrero.


Frontiers in Plant Science | 2014

Infrared and Raman spectroscopic features of plant cuticles: a review

José A. Heredia-Guerrero; José J. Benítez; Eva Domínguez; Illker S. Bayer; Roberto Cingolani; Athanassia Athanassiou; Antonio Heredia

The cuticle is one of the most important plant barriers. It is an external and continuous lipid membrane that covers the surface of epidermal cells and whose main function is to prevent the massive loss of water. The spectroscopic characterization of the plant cuticle and its components (cutin, cutan, waxes, polysaccharides and phenolics) by infrared and Raman spectroscopies has provided significant advances in the knowledge of the functional groups present in the cuticular matrix and on their structural role, interaction and macromolecular arrangement. Additionally, these spectroscopies have been used in the study of cuticle interaction with exogenous molecules, degradation, distribution of components within the cuticle matrix, changes during growth and development and characterization of fossil plants.


Plant Physiology | 2011

New Insights into the Properties of Pubescent Surfaces: Peach Fruit as a Model

Victoria Fernández; M. Khayet; Pablo Montero-Prado; José A. Heredia-Guerrero; Georgios Liakopoulos; George Karabourniotis; Víctor del Río; Eva Domínguez; Ignacio Tacchini; Cristina Nerín; Jesús Val; Antonio Heredia

The surface of peach (Prunus persica ‘Calrico’) is covered by a dense indumentum, which may serve various protective purposes. With the aim of relating structure to function, the chemical composition, morphology, and hydrophobicity of the peach skin was assessed as a model for a pubescent plant surface. Distinct physicochemical features were observed for trichomes versus isolated cuticles. Peach cuticles were composed of 53% cutan, 27% waxes, 23% cutin, and 1% hydroxycinnamic acid derivatives (mainly ferulic and p-coumaric acids). Trichomes were covered by a thin cuticular layer containing 15% waxes and 19% cutin and were filled by polysaccharide material (63%) containing hydroxycinnamic acid derivatives and flavonoids. The surface free energy, polarity, and work of adhesion of intact and shaved peach surfaces were calculated from contact angle measurements of water, glycerol, and diiodomethane. The removal of the trichomes from the surface increased polarity from 3.8% (intact surface) to 23.6% and decreased the total surface free energy chiefly due to a decrease on its nonpolar component. The extraction of waxes and the removal of trichomes led to higher fruit dehydration rates. However, trichomes were found to have a higher water sorption capacity as compared with isolated cuticles. The results show that the peach surface is composed of two different materials that establish a polarity gradient: the trichome network, which has a higher surface free energy and a higher dispersive component, and the cuticle underneath, which has a lower surface free energy and higher surface polarity. The significance of the data concerning water-plant surface interactions is discussed within a physiological context.


Plant and Soil | 2008

Leaf structural changes associated with iron deficiency chlorosis in field-grown pear and peach: physiological implications

Victoria Fernández; Thomas Eichert; Víctor del Río; Gloria López-Casado; José A. Heredia-Guerrero; Anunciación Abadía; Antonio Heredia; Javier Abadía

Plants grown in calcareous, high pH soils develop Fe deficiency chlorosis. While the physiological parameters of Fe-deficient leaves have been often investigated, there is a lack of information regarding structural leaf changes associated with such abiotic stress. Iron-sufficient and Fe-deficient pear and peach leaves have been studied, and differences concerning leaf epidermal and internal structure were found. Iron deficiency caused differences in the aspect of the leaf surface, which appeared less smooth in Fe-deficient than in Fe-sufficient leaves. Iron deficiency reduced the amount of soluble cuticular lipids in peach leaves, whereas it reduced the weight of the abaxial cuticle in pear leaves. In both plant species, epidermal cells were enlarged as compared to healthy leaves, whereas the size of guard cells was reduced. In chlorotic leaves, bundle sheaths were enlarged and appeared disorganized, while the mesophyll was more compacted and less porous than in green leaves. In contrast to healthy leaves, chlorotic leaves of both species showed a significant transient opening of stomata after leaf abscission (Iwanoff effect), which can be ascribed to changes found in epidermal and guard cells. Results indicate that Fe-deficiency may alter the barrier properties of the leaf surface, which can significantly affect leaf water relations, solute permeability and pest and disease resistance.


Plant Physiology | 2014

Wettability, Polarity, and Water Absorption of Holm Oak Leaves: Effect of Leaf Side and Age

Victoria Fernández; Domingo Sancho-Knapik; Paula Guzmán; José Javier Peguero-Pina; Luis Gil; George Karabourniotis; M. Khayet; Costas Fasseas; José A. Heredia-Guerrero; Antonio Heredia; Eustaquio Gil-Pelegrín

The highly pubescent abaxial side of holm oak leaves is unwettable and water repellent, while the adaxial side is wettable and can take up water, which may be an adaptation to growing under Mediterranean conditions. Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition, and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of holm oak (Quercus ilex) as a model. By measuring the leaf water potential 24 h after the deposition of water drops onto abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water-repellent abaxial holm oak leaf sides. The surface free energy and solubility parameter decreased with leaf age, with higher values determined for the adaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition, and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical chemistry, and plant ecophysiology.


New Phytologist | 2014

Biomechanical properties of the tomato (Solanum lycopersicum) fruit cuticle during development are modulated by changes in the relative amounts of its components

Laura España; José A. Heredia-Guerrero; Patricia Segado; José J. Benítez; Antonio Heredia; Eva Domínguez

In this study, growth-dependent changes in the mechanical properties of the tomato (Solanum lycopersicum) cuticle during fruit development were investigated in two cultivars with different patterns of cuticle growth and accumulation. The mechanical properties were determined in uniaxial tensile tests using strips of isolated cuticles. Changes in the functional groups of the cuticle chemical components were analysed by attenuated total reflectance-Fourier transform infrared (ATR-FTIR). The early stages of fruit growth are characterized by an elastic cuticle, and viscoelastic behaviour only appeared at the beginning of cell enlargement. Changes in the cutin:polysaccharide ratio during development affected the strength required to achieve viscoelastic deformation. The increase in stiffness and decrease in extensibility during ripening, related to flavonoid accumulation, were accompanied by an increase in cutin depolymerization as a result of a reduction in the overall number of ester bonds. Quantitative changes in cuticle components influence the elastic/viscoelastic behaviour of the cuticle. The cutin:polysaccharide ratio modulates the stress required to permanently deform the cuticle and allow cell enlargement. Flavonoids stiffen the elastic phase and reduce permanent viscoelastic deformation. Ripening is accompanied by a chemical cleavage of cutin ester bonds. An infrared (IR) band related to phenolic accumulation can be used to monitor changes in the cutin esterification index.


BioEssays | 2008

Self-assembled polyhydroxy fatty acids vesicles: a mechanism for plant cutin synthesis

José A. Heredia-Guerrero; José J. Benítez; Antonio Heredia

Despite its biological importance, the mechanism of formation of cutin, the polymeric matrix of plant cuticles, has not yet been fully clarified. Here, for the first time, we show the participation in the process of lipid vesicles formed by the self-assembly of endogenous polyhydroxy fatty acids. The accumulation and fusion of these vesicles (cutinsomes) at the outer part of epidermal cell wall is proposed as the mechanism for early cuticle formation.


ACS Applied Materials & Interfaces | 2015

Robust and Biodegradable Elastomers Based on Corn Starch and Polydimethylsiloxane (PDMS)

Luca Ceseracciu; José A. Heredia-Guerrero; Silvia Dante; Athanassia Athanassiou; Ilker S. Bayer

Designing starch-based biopolymers and biodegradable composites with durable mechanical properties and good resistance to water is still a challenging task. Although thermoplastic (destructured) starch has emerged as an alternative to petroleum-based polymers, its poor dimensional stability under humid and dry conditions extensively hinders its use as the biopolymer of choice in many applications. Unmodified starch granules, on the other hand, suffer from incompatibility, poor dispersion, and phase separation issues when compounded into other thermoplastics above a concentration level of 5%. Herein, we present a facile biodegradable elastomer preparation method by incorporating large amounts of unmodified corn starch, exceeding 80% by volume, in acetoxy-polyorganosiloxane thermosets to produce mechanically robust, hydrophobic bioelastomers. The naturally adsorbed moisture on the surface of starch enables autocatalytic rapid hydrolysis of polyorganosiloxane to form Si-O-Si networks. Depending on the amount of starch granules, the mechanical properties of the bioelastomers can be easily tuned with high elastic recovery rates. Moreover, starch granules considerably lowered the surface friction coefficient of the polyorganosiloxane network. Stress relaxation measurements indicated that the bioelastomers have strain energy dissipation factors that are lower than those of conventional rubbers, rendering them as promising green substitutes for plastic mechanical energy dampeners. Corn starch granules also have excellent compatibility with addition-cured polysiloxane chemistry that is used extensively in microfabrication. Regardless of the starch concentration, all of the developed bioelastomers have hydrophobic surfaces with lower friction coefficients and much less water uptake capacity than those of thermoplastic starch. The bioelastomers are biocompatible and are estimated to biodegrade in Mediterranean seawater within three to six years.


Trends in Plant Science | 2015

Plant cutin genesis: unanswered questions

Eva Domínguez; José A. Heredia-Guerrero; Antonio Heredia

The genesis of cutin, the main lipid polymer present in the biosphere, has remained elusive for many years. Recently, two main approaches have attempted to explain the process of cutin polymerization. One describes the existence of an acyltransferase cutin synthase enzyme that links activated monomers of cutin in the outer cell wall, while the other shows that plant cutin is the final result of an extracellular nonenzymatic self-assembly and polymerizing process of cutin monomers. In this opinion article, we explain both models and suggest that they could be pieces of a more complex biological scenario. We also highlight their different characteristics and current limitations, and suggest a potential synergism of both hypotheses.


ACS Nano | 2015

Surface-Structured Bacterial Cellulose with Guided Assembly-Based Biolithography (GAB)

Simone Bottan; Francesco Robotti; Prageeth Jayathissa; Alicia Hegglin; Nicolas Bahamonde; José A. Heredia-Guerrero; Ilker S. Bayer; Alice Scarpellini; Hannes Merker; Nicole Lindenblatt; Dimos Poulikakos; Aldo Ferrari

A powerful replica molding methodology to transfer on-demand functional topographies to the surface of bacterial cellulose nanofiber textures is presented. With this method, termed guided assembly-based biolithography (GAB), a surface-structured polydimethylsiloxane (PDMS) mold is introduced at the gas-liquid interface of an Acetobacter xylinum culture. Upon bacterial fermentation, the generated bacterial cellulose nanofibers are assembled in a three-dimensional network reproducing the geometric shape imposed by the mold. Additionally, GAB yields directional alignment of individual nanofibers and memory of the transferred geometrical features upon dehydration and rehydration of the substrates. Scanning electron and atomic force microscopy are used to establish the good fidelity of this facile and affordable method. Interaction of surface-structured bacterial cellulose substrates with human fibroblasts and keratinocytes illustrates the efficient control of cellular activities which are fundamental in skin wound healing and tissue regeneration. The deployment of surface-structured bacterial cellulose substrates in model animals as skin wound dressing or body implant further proves the high durability and low inflammatory response to the material over a period of 21 days, demonstrating beneficial effects of surface structure on skin regeneration.


Langmuir | 2009

Chemical Reactions in 2D: Self-Assembly and Self-Esterification of 9(10),16-Dihydroxypalmitic Acid on Mica Surface

José A. Heredia-Guerrero; Mark S.P. Sansom; Antonio Heredia; José J. Benítez

9(10),16-Dihydroxypalmitic acid (diHPA) is a particularly interesting polyhydroxylated fatty acid (1) because it is the main monomer of cutin, the most abundant biopolyester in nature, and (2) because the presence of a terminal and a secondary hydroxyl group in midchain positions provides an excellent model to study their intermolecular interactions in a confined phase such as self-assembled layers. In this study we have combined atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), attenuated total reflection Fourier transform infrared (ATR-FT-IR) spectroscopy, as well as molecular dynamics (MD) simulations to conclude that the self-assembling of diHPA molecules on mica is a layer by layer process following a Brunauer-Emmett-Teller (BET) type isotherm and with the first layer growing much faster than the rest. Interactions between secondary hydroxyls reinforce the cohesive energy of the monolayer, while the presence of the terminal hydroxyl group is necessary to trigger the multilayered growth. Besides, XPS and ATR-FT-IR spectroscopies clearly indicate that spontaneous self-esterification occurs upon self-assembling. The esterification reaction is a prerequisite to propose a self-assembly route for the biosynthesis of cutin in nature. Molecular dynamics simulations have shown that internal molecular reorganization within the self-assembled layers provides the appropriate intermolecular orientation to facilitate the nucleophilic attack and the release of a water molecule required by the esterification reaction.

Collaboration


Dive into the José A. Heredia-Guerrero's collaboration.

Top Co-Authors

Avatar

Athanassia Athanassiou

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José J. Benítez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ilker S. Bayer

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Luca Ceseracciu

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Guzman-Puyol

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Roberto Cingolani

Istituto Italiano di Tecnologia

View shared research outputs
Top Co-Authors

Avatar

Elisa Mele

Loughborough University

View shared research outputs
Top Co-Authors

Avatar

Uttam C. Paul

Istituto Italiano di Tecnologia

View shared research outputs
Researchain Logo
Decentralizing Knowledge