Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José A. Monreal is active.

Publication


Featured researches published by José A. Monreal.


Science | 2008

The Circadian Clock in Arabidopsis Roots Is a Simplified Slave Version of the Clock in Shoots

Allan B. James; José A. Monreal; Gillian A. Nimmo; Ciarán L. Kelly; Pawel Herzyk; Gareth I. Jenkins; Hugh G. Nimmo

The circadian oscillator in eukaryotes consists of several interlocking feedback loops through which the expression of clock genes is controlled. It is generally assumed that all plant cells contain essentially identical and cell-autonomous multiloop clocks. Here, we show that the circadian clock in the roots of mature Arabidopsis plants differs markedly from that in the shoots and that the root clock is synchronized by a photosynthesis-related signal from the shoot. Two of the feedback loops of the plant circadian clock are disengaged in roots, because two key clock components, the transcription factors CCA1 and LHY, are able to inhibit gene expression in shoots but not in roots. Thus, the plant clock is organ-specific but not organ-autonomous.


Molecular Plant-microbe Interactions | 2009

The Absence of Nops Secretion in Sinorhizobium fredii HH103 Increases GmPR1 Expression in Williams Soybean

Francisco Javier López-Baena; José A. Monreal; Francisco Pérez-Montaño; Beatriz Guasch-Vidal; Ramón A. Bellogín; José M. Vinardell; Francisco Javier Ollero

Sinorhizobium fredii HH103 secretes through the type III secretion system at least eight nodulation outer proteins (Nops), including the effector NopP. These proteins are necessary for an effective nodulation of soybean. In this work, we show that expression of the nopP gene depended on flavonoids and on the transcriptional regulators NodD1 and TtsI. Inactivation of nopP led to an increase in the symbiotic capacity of S. fredii HH103 to nodulate Williams soybean. In addition, we studied whether Nops affect the expression of the pathogenesis-related genes GmPR1, GmPR2, and GmPR3 in soybean roots and shoots. In the presence of S. fredii HH103, expression of pathogenesis-related (PR) gene PR1 was induced in soybean roots 4 days after inoculation and it increased 8 days after inoculation. The absence of Nops provoked a higher induction of PR1 in both soybean roots and shoots, suggesting that Nops function early, diminishing plant defense responses during rhizobial infection. However, the inactivation of nopP led to a decrease in PR1 expression. Therefore, the absence of NopP or that of the complete set of Nops seems to have opposite effects on the symbiotic performance and on the elicitation of soybean defense responses.


Journal of Plant Physiology | 2015

Proline synthesis in barley under iron deficiency and salinity.

Cirenia Arias-Baldrich; Nadja Bosch; Digna Begines; Ana B. Feria; José A. Monreal; Sofía García-Mauriño

This work investigates proline synthesis in six barley varieties subjected to iron deficiency, salinity or both stresses. The highest growth under Fe sufficiency corresponded to Belgrano and Shakira. A moderate augment of leaf phosphoenolpyruvate carboxylase (PEPC) activity was observed in all six varieties in response to Fe deficiency, consistently in leaves and sporadically in roots. All six varieties accumulated proline under Fe deficiency, to a higher extent in leaves than in roots. The decrease of Fe supply from 100 μM NaFe(III)-EDTA to 0.5 μM NaFe(III)-EDTA reduced growth and photosynthetic pigments similarly in the six barley varieties. On the contrary, differences between varieties could be observed with respect to increased or, conversely, decreased proline content as a function of the amount of NaFe(III)-EDTA supplied. These two opposite types were represented by Belgrano (higher proline under Fe deficiency) and Shakira (higher proline under Fe sufficiency). Time-course experiments suggested that leaf PEPC activity was not directly responsible for supplying C for proline synthesis under Fe deficiency. High proline levels in the leaves of Fe-deficient Belgrano plants in salinity were associated to a better performance of this variety under these combined stresses.


FEBS Letters | 2007

ABA modulates the degradation of phosphoenolpyruvate carboxylase kinase in sorghum leaves.

José A. Monreal; Ana B. Feria; José M. Vinardell; Jean Vidal; Cristina Echevarría; Sofía García-Mauriño

Salt stresses strongly enhance the phosphoenolpyruvate carboxylase kinase (PEPC‐k) activity of sorghum leaves. This work shows that (1) abscisic acid (ABA) increased the rise in kinase activity in illuminated leaf disks of the non‐stressed plant, (2) ABA decreased the disappearance of PEPC‐k activity in the dark, (3) two PEPC‐k genes expressed in sorghum leaves, PPCK1 and PPCK2, were not up‐regulated by the phytohormone and, (4) ABA effects were mimicked by MG132, a powerful inhibitor of the ubiquitin‐proteasome pathway. Collectively these data support a role for the ubiquitin‐proteasome pathway in the rapid turnover of PEPC‐k. The negative control by ABA on this pathway might account for the increase of kinase activity observed in salt‐treated plants.


Molecular Plant-microbe Interactions | 2015

The Sinorhizobium (Ensifer) fredii HH103 Type 3 Secretion System Suppresses Early Defense Responses to Effectively Nodulate Soybean

Irene Jiménez-Guerrero; Francisco Pérez-Montaño; José A. Monreal; Gail M. Preston; Helen N. Fones; Blanca Vioque; Francisco Javier Ollero; Francisco Javier López-Baena

Plants that interact with pathogenic bacteria in their natural environments have developed barriers to block or contain the infection. Phytopathogenic bacteria have evolved mechanisms to subvert these defenses and promote infection. Thus, the type 3 secretion system (T3SS) delivers bacterial effectors directly into the plant cells to alter host signaling and suppress defenses, providing an appropriate environment for bacterial multiplication. Some rhizobial strains possess a symbiotic T3SS that seems to be involved in the suppression of host defenses to promote nodulation and determine the host range. In this work, we show that the inactivation of the Sinorhizobium (Ensifer) fredii HH103 T3SS negatively affects soybean nodulation in the early stages of the symbiotic process, which is associated with a reduction of the expression of early nodulation genes. This symbiotic phenotype could be the consequence of the bacterial triggering of soybean defense responses associated with the production of salicylic acid (SA) and the impairment of the T3SS mutant to suppress these responses. Interestingly, the early induction of the transcription of GmMPK4, which negatively regulates SA accumulation and defense responses in soybean via WRKY33, could be associated with the differential defense responses induced by the parental and the T3SS mutant strain.


Journal of Experimental Botany | 2010

Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase

José A. Monreal; Francisco Javier López-Baena; Jean Vidal; Cristina Echevarría; Sofía García-Mauriño

The photosynthetic phosphoenolpyruvate carboxylase (C4-PEPC) is regulated by phosphorylation by a phosphoenolpyruvate carboxylase kinase (PEPC-k). In Digitaria sanguinalis mesophyll protoplasts, this light-mediated transduction cascade principally requires a phosphoinositide-specific phospholipase C (PI-PLC) and a Ca2+-dependent step. The present study investigates the cascade components at the higher integrated level of Sorghum bicolor leaf discs and leaves. PEPC-k up-regulation required light and photosynthetic electron transport. However, the PI-PLC inhibitor U-73122 and inhibitors of calcium release from intracellular stores only partially blocked this process. Analysis of [32P]phosphate-labelled phospholipids showed a light-dependent increase in phospholipase D (PLD) activity. Treatment of leaf discs with n-butanol, which decreases the formation of phosphatidic acid (PA) by PLD, led to the partial inhibition of the C4-PEPC phosphorylation, suggesting the participation of PLD/PA in the signalling cascade. PPCK1 gene expression was strictly light-dependent. Addition of neomycin or n-butanol decreased, and a combination of both inhibitors markedly reduced PPCK1 expression and the concomitant rise in PEPC-k activity. The calcium/calmodulin antagonist W7 blocked the light-dependent up-regulation of PEPC-k, pointing to a Ca2+-dependent protein kinase (CDPK) integrating both second messengers, calcium and PA, which were shown to increase the activity of sorghum CDPK.


Planta | 2013

Nitric oxide regulation of leaf phosphoenolpyruvate carboxylase-kinase activity: implication in sorghum responses to salinity

José A. Monreal; Cirenia Arias-Baldrich; Vanesa Tossi; Ana B. Feria; Alfredo E. Rubio-Casal; Carlos García-Mata; Lorenzo Lamattina; Sofía García-Mauriño

Nitric oxide (NO) is a signaling molecule that mediates many plant responses to biotic and abiotic stresses, including salt stress. Interestingly, salinity increases NO production selectively in mesophyll cells of sorghum leaves, where photosynthetic C4 phosphoenolpyruvate carboxylase (C4 PEPCase) is located. PEPCase is regulated by a phosphoenolpyruvate carboxylase-kinase (PEPCase-k), which levels are greatly enhanced by salinity in sorghum. This work investigated whether NO is involved in this effect. NO donors (SNP, SNAP), the inhibitor of NO synthesis NNA, and the NO scavenger cPTIO were used for long- and short-term treatments. Long-term treatments had multifaceted consequences on both PPCK gene expression and PEPCase-k activity, and they also decreased photosynthetic gas-exchange parameters and plant growth. Nonetheless, it could be observed that SNP increased PEPCase-k activity, resembling salinity effect. Short-term treatments with NO donors, which did not change photosynthetic gas-exchange parameters and PPCK gene expression, increased PEPCase-k activity both in illuminated leaves and in leaves kept at dark. At least in part, these effects were independent on protein synthesis. PEPCase-k activity was not decreased by short-term treatment with cycloheximide in NaCl-treated plants; on the contrary, it was decreased by cPTIO. In summary, NO donors mimicked salt effect on PEPCase-k activity, and scavenging of NO abolished it. Collectively, these results indicate that NO is involved in the complex control of PEPCase-k activity, and it may mediate some of the plant responses to salinity.


Journal of Plant Physiology | 2017

Enzymatic activity, gene expression and posttranslational modifications of photosynthetic and non-photosynthetic phosphoenolpyruvate carboxylase in ammonium-stressed sorghum plants

Cirenia Arias-Baldrich; Clara de la Osa; Nadja Bosch; Isabel Ruiz-Ballesta; José A. Monreal; Sofía García-Mauriño

Sorghum plants grown with 5mM (NH4)2SO4 showed symptoms of stress, such as reduced growth and photosynthesis, leaf chlorosis, and reddish roots. Phosphoenolpyruvate carboxylase (PEPC) activity, by supplying carbon skeletons for ammonium assimilation, plays a pivotal role in tolerance to ammonium stress. This work investigated the effect of ammonium nutrition on PPC and PPCK gene expression, on PEPC activity, and on post-translational modifications (PTMs) of PEPC in leaves and roots of sorghum plants. Ammonium increased PEPC kinase (PEPCk) activity and the phosphorylation state of PEPC in leaves, both in light and in the dark, due to increased PPCK1 expression in leaves. This result resembled the effect of salinity on sorghum leaf PEPC and PEPCk, which is thought to allow a better functioning of PEPC in conditions that limit the income of reduced C. In roots, ammonium increased PEPC activity and the amount of monoubiquitinated PEPC. The first effect was related to increased PPC3 expression in roots. These results highlight the relevance of this specific isoenzyme (PPC3) in sorghum responses to ammonium stress. Although the role of monoubiquitination is not fully understood, it also increased in germinating seeds along with massive mobilization of reserves, a process in which the anaplerotic function of PEPC is of major importance.


Planta | 2016

Phosphoenolpyruvate carboxylase (PEPC) and PEPC-kinase (PEPC-k) isoenzymes in Arabidopsis thaliana: role in control and abiotic stress conditions.

Ana B. Feria; Nadja Bosch; Alfonso Sánchez; Ana I. Nieto-Ingelmo; Clara de la Osa; Cristina Echevarría; Sofía García-Mauriño; José A. Monreal

AbstractMain conclusionArabidopsisppc3mutant has a growth-arrest phenotype and is affected in phosphate- and salt-stress responses, showing that this protein is crucial under control or stress conditions. Phosphoenolpyruvate carboxylase (PEPC) and its dedicated kinase (PEPC-k) are ubiquitous plant proteins implicated in many physiological processes. This work investigates specific roles for the three plant-type PEPC (PTPC) and the two PEPC-k isoenzymes in Arabidopsis thaliana. The lack of any of the PEPC isoenzymes reduced growth parameters under optimal growth conditions. PEPC activity was decreased in shoots and roots of ppc2 and ppc3 mutants, respectively. Phosphate starvation increased the expression of all PTPC and PPCK genes in shoots, but only PPC3 and PPCK2 in roots. The absence of any of these two proteins was not compensated by other isoforms in roots. The effect of salt stress on PTPC and PPCK expression was modest in shoots, but PPC3 was markedly increased in roots. Interestingly, both stresses decreased root growth in each of the mutants except for ppc3. This mutant had a stressed phenotype in control conditions (reduced root growth and high level of stress molecular markers), but was unaffected in their response to high salinity. Salt stress increased PEPC activity, its phosphorylation state, and L-malate content in roots, all these responses were abolished in the ppc3 mutant. Our results highlight the importance of the PPC3 isoenzyme for the normal development of plants and for root responses to stress.


Planta | 2017

Salinity promotes opposite patterns of carbonylation and nitrosylation of C4 phosphoenolpyruvate carboxylase in sorghum leaves

Guillermo Baena; Ana B. Feria; Cristina Echevarría; José A. Monreal; Sofía García-Mauriño

Main conclusionCarbonylation inactivates sorghum C4 PEPCase while nitrosylation has little impact on its activity but holds back carbonylation. This interplay could be important to preserve photosynthetic C4 PEPCase activity in salinity.Previous work had shown that nitric acid (NO) increased phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity, promoting the phosphorylation of phosphoenolpyruvate carboxylase (PEPCase) in sorghum leaves (Monreal et al. in Planta 238:859–869, 2013b). The present work investigates the effect of NO on C4 PEPCase in sorghum leaves and its interplay with carbonylation, an oxidative modification frequently observed under salt stress. The PEPCase of sorghum leaves could be carbonylated in vitro and in vivo, and this post-translational modification (PTM) was accompanied by a loss of its activity. Similarly, PEPCase could be S-nitrosylated in vitro and in vivo, and this PTM had little impact on its activity. The S-nitrosylated PEPCase showed increased resistance towards subsequent carbonylation, both in vitro and in vivo. Under salt shock, carbonylation of PEPCase increased in parallel with decreased S-nitrosylation of the enzyme. Subsequent increase of S-nitrosylation was accompanied by decreased carbonylation. Taken together, the results suggest that S-nitrosylation could contribute to maintain C4 PEPCase activity in stressed sorghum plants. Thus, salt-induced NO synthesis would be protecting photosynthetic PEPCase activity from oxidative inactivation while promoting its phosphorylation, which will guarantee its optimal functioning in suboptimal conditions.

Collaboration


Dive into the José A. Monreal's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge