Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose A. Pineda is active.

Publication


Featured researches published by Jose A. Pineda.


Critical Care Medicine | 2010

Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury

Linda Papa; Linnet Akinyi; Ming Cheng Liu; Jose A. Pineda; Joseph J. Tepas; Monika W. Oli; Wenrong Zheng; Gillian Robinson; Steven A. Robicsek; Andrea Gabrielli; Shelley C. Heaton; H. Julia Hannay; Jason A. Demery; Gretchen M. Brophy; Joe Layon; Claudia S. Robertson; Ronald L. Hayes; Kevin K. W. Wang

Objective:Ubiquitin C-terminal hydrolase (UCH-L1), also called neuronal-specific protein gene product (PGP 9.3), is highly abundant in neurons. To assess the reliability of UCH-L1 as a potential biomarker for traumatic brain injury (TBI) this study compared cerebrospinal fluid (CSF) levels of UCH-L1 from adult patients with severe TBI to uninjured controls; and examined the relationship between levels with severity of injury, complications and functional outcome. Design:This study was designed as prospective case control study. Patients:This study enrolled 66 patients, 41 with severe TBI, defined by a Glasgow coma scale (GCS) score of ≤8, who underwent intraventricular intracranial pressure monitoring and 25 controls without TBI requiring CSF drainage for other medical reasons. Setting:Two hospital system level I trauma centers. Measurements and Main Results:Ventricular CSF was sampled from each patient at 6, 12, 24, 48, 72, 96, 120, 144, and 168 hrs following TBI and analyzed for UCH-L1. Injury severity was assessed by the GCS score, Marshall Classification on computed tomography and a complicated postinjury course. Mortality was assessed at 6 wks and long-term outcome was assessed using the Glasgow outcome score 6 months after injury. TBI patients had significantly elevated CSF levels of UCH-L1 at each time point after injury compared to uninjured controls. Overall mean levels of UCH-L1 in TBI patients was 44.2 ng/mL (±7.9) compared with 2.7 ng/mL (±0.7) in controls (p <.001). There were significantly higher levels of UCH-L1 in patients with a lower GCS score at 24 hrs, in those with postinjury complications, in those with 6-wk mortality, and in those with a poor 6-month dichotomized Glasgow outcome score. Conclusions:These data suggest that this novel biomarker has the potential to determine injury severity in TBI patients. Further studies are needed to validate these findings in a larger sample.


The New England Journal of Medicine | 2015

Therapeutic Hypothermia after Out-of-Hospital Cardiac Arrest in Children

Frank W. Moler; Faye S. Silverstein; Richard Holubkov; Beth S. Slomine; James R. Christensen; Vinay Nadkarni; Kathleen L. Meert; Brittan Browning; Victoria L. Pemberton; Kent Page; Seetha Shankaran; Jamie Hutchison; Christopher J. L. Newth; Kimberly Statler Bennett; John T. Berger; Alexis A. Topjian; Jose A. Pineda; Joshua Koch; Charles L. Schleien; Heidi J. Dalton; George Ofori-Amanfo; Denise M. Goodman; Ericka L. Fink; Patrick S. McQuillen; Jerry J. Zimmerman; Neal J. Thomas; Elise W. van der Jagt; Melissa B. Porter; Michael T. Meyer; Rick Harrison

BACKGROUND Therapeutic hypothermia is recommended for comatose adults after witnessed out-of-hospital cardiac arrest, but data about this intervention in children are limited. METHODS We conducted this trial of two targeted temperature interventions at 38 childrens hospitals involving children who remained unconscious after out-of-hospital cardiac arrest. Within 6 hours after the return of circulation, comatose patients who were older than 2 days and younger than 18 years of age were randomly assigned to therapeutic hypothermia (target temperature, 33.0°C) or therapeutic normothermia (target temperature, 36.8°C). The primary efficacy outcome, survival at 12 months after cardiac arrest with a Vineland Adaptive Behavior Scales, second edition (VABS-II), score of 70 or higher (on a scale from 20 to 160, with higher scores indicating better function), was evaluated among patients with a VABS-II score of at least 70 before cardiac arrest. RESULTS A total of 295 patients underwent randomization. Among the 260 patients with data that could be evaluated and who had a VABS-II score of at least 70 before cardiac arrest, there was no significant difference in the primary outcome between the hypothermia group and the normothermia group (20% vs. 12%; relative likelihood, 1.54; 95% confidence interval [CI], 0.86 to 2.76; P=0.14). Among all the patients with data that could be evaluated, the change in the VABS-II score from baseline to 12 months was not significantly different (P=0.13) and 1-year survival was similar (38% in the hypothermia group vs. 29% in the normothermia group; relative likelihood, 1.29; 95% CI, 0.93 to 1.79; P=0.13). The groups had similar incidences of infection and serious arrhythmias, as well as similar use of blood products and 28-day mortality. CONCLUSIONS In comatose children who survived out-of-hospital cardiac arrest, therapeutic hypothermia, as compared with therapeutic normothermia, did not confer a significant benefit in survival with a good functional outcome at 1 year. (Funded by the National Heart, Lung, and Blood Institute and others; THAPCA-OH ClinicalTrials.gov number, NCT00878644.).


Critical Care Medicine | 2011

Multicenter cohort study of out-of-hospital pediatric cardiac arrest*

Frank W. Moler; Amy E. Donaldson; Kathleen L. Meert; Richard J. Brilli; Vinay Nadkarni; Donald H. Shaffner; Charles L. Schleien; Robert Clark; Heidi J. Dalton; Kimberly D. Statler; Kelly Tieves; Richard Hackbarth; Robert K. Pretzlaff; Elise W. van der Jagt; Jose A. Pineda; Lynn J. Hernan; J. Michael Dean

Objectives:To describe a large cohort of children with out-of-hospital cardiac arrest with return of circulation and to identify factors in the early postarrest period associated with survival. These objectives were for planning an interventional trial of therapeutic hypothermia after pediatric cardiac arrest. Methods:A retrospective cohort study was conducted at 15 Pediatric Emergency Care Applied Research Network clinical sites over an 18-month study period. All children from 1 day (24 hrs) to 18 yrs of age with out-of-hospital cardiac arrest and a history of at least 1 min of chest compressions with return of circulation for at least 20 mins were eligible. Measurements and Main Results:One hundred thirty-eight cases met study entry criteria; the overall mortality was 62% (85 of 138 cases). The event characteristics associated with increased survival were as follows: weekend arrests, cardiopulmonary resuscitation not ongoing at hospital arrival, arrest rhythm not asystole, no atropine or NaHCO3, fewer epinephrine doses, shorter duration of cardiopulmonary resuscitation, and drowning or asphyxial arrest event. For the 0- to 12-hr postarrest return-of-circulation period, absence of any vasopressor or inotropic agent (dopamine, epinephrine) use, higher lowest temperature recorded, greater lowest pH, lower lactate, lower maximum glucose, and normal pupillary responses were all associated with survival. A multivariate logistic model of variables available at the time of arrest, which controlled for gender, age, race, and asystole or ventricular fibrillation/ventricular tachycardia anytime during the arrest, found the administration of atropine and epinephrine to be associated with mortality. A second model using additional information available up to 12 hrs after return of circulation found 1) preexisting lung or airway disease; 2) an etiology of arrest drowning or asphyxia; 3) higher pH, and 4) bilateral reactive pupils to be associated with lower mortality. Receiving more than three doses of epinephrine was associated with poor outcome in 96% (44 of 46) of cases. Conclusions:Multiple factors were identified as associated with survival after out-of-hospital pediatric cardiac arrest with the return of circulation. Additional information available within a few hours after the return of circulation may diminish outcome associations of factors available at earlier times in regression models. These factors should be considered in the design of future interventional trials aimed to improve outcome after pediatric cardiac arrest.


Journal of Neurotrauma | 2012

Re-Orientation of Clinical Research in Traumatic Brain Injury: Report of an International Workshop on Comparative Effectiveness Research

Andrew I.R. Maas; David K. Menon; Hester F. Lingsma; Jose A. Pineda; M. Elizabeth Sandel; Geoffrey T. Manley

During the National Neurotrauma Symposium 2010, the DG Research of the European Commission and the National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS) organized a workshop on comparative effectiveness research (CER) in traumatic brain injury (TBI). This workshop reviewed existing approaches to improve outcomes of TBI patients. It had two main outcomes: First, it initiated a process of re-orientation of clinical research in TBI. Second, it provided ideas for a potential collaboration between the European Commission and the NIH/NINDS to stimulate research in TBI. Advances in provision of care for TBI patients have resulted from observational studies, guideline development, and meta-analyses of individual patient data. In contrast, randomized controlled trials have not led to any identifiable major advances. Rigorous protocols and tightly selected populations constrain generalizability. The workshop addressed additional research approaches, summarized the greatest unmet needs, and highlighted priorities for future research. The collection of high-quality clinical databases, associated with systems biology and CER, offers substantial opportunities. Systems biology aims to identify multiple factors contributing to a disease and addresses complex interactions. Effectiveness research aims to measure benefits and risks of systems of care and interventions in ordinary settings and broader populations. These approaches have great potential for TBI research. Although not new, they still need to be introduced to and accepted by TBI researchers as instruments for clinical research. As with therapeutic targets in individual patient management, so it is with research tools: one size does not fit all.


Annals of Neurology | 2002

Apolipoprotein E affects the central nervous system response to injury and the development of cerebral edema.

John R. Lynch; Jose A. Pineda; Duncan Morgan; Lin Zhang; David S. Warner; Helen Benveniste; Daniel T. Laskowitz

Apolipoprotein E has been implicated in modifying neurological outcome after traumatic brain injury, although the mechanisms by which this occurs remain poorly defined. To investigate the role of endogenous apolipoprotein E following acute brain injury, noninvasive magnetic resonance imaging was performed on anesthetized mice following closed head injury. Effacement of the lateral ventricle was used as a radiographic surrogate for cerebral edema. At 24 hours following injury, apolipoprotein E‐deficient animals had a greater degree of cerebral edema as compared to matched controls. In addition, the brains of apolipoprotein E‐deficient animals had a significantly greater upregulation of tissue necrosis factor α messenger ribonucleic acid as compared to controls as early as 1‐hr post injury. Thus, modulation of the endogenous central nervous system inflammatory response may be one mechanism by which apolipoprotein E affects outcome following acute brain injury.


Brain Pathology | 2004

Biomarkers of Proteolytic Damage Following Traumatic Brain Injury

Jose A. Pineda; Kevin K. W. Wang; Ronald L. Hayes

The history of numerous failed clinical trials designed to identify therapeutic agents to assist in improving outcomes after traumatic brain injury points to the critical importance of understanding biochemical markers of injury. Such biomarkers should be readily accessible, provide information specific to the pathologic disruptions occurring in the central nervous system, and allow improved monitoring of the progression of secondary damage. Additionally, these biomarkers should may provide investigators a window on the individual patients response to treatment, and should contribute to prediction of outcome. Most research on this topic to date has focused on neuron‐specific enolase (NSE) and S‐100 proteins but these have not proven to be satisfactory for a variety of reasons. A different approach is provided by the study of 2 important proteases, caspase‐3 and calpain. This paper reports the current state of knowledge concerning caspase and calpain as specific markers of TBI, and discusses alll‐spectrin, a principal substrate for both caspase and calpain, as well as initial findings regarding neurofilament 68 protein (NF‐68).


Journal of Neurotrauma | 2009

αII-Spectrin Breakdown Product Cerebrospinal Fluid Exposure Metrics Suggest Differences in Cellular Injury Mechanisms after Severe Traumatic Brain Injury

Gretchen M. Brophy; Jose A. Pineda; Linda Papa; Stephen B. Lewis; Alex B. Valadka; H. Julia Hannay; Shelley C. Heaton; Jason A. Demery; Ming Cheng Liu; Joseph J. Tepas; Andrea Gabrielli; Steven A. Robicsek; Kevin K. W. Wang; Claudia S. Robertson; Ronald L. Hayes

Traumatic brain injury (TBI) produces alphaII-spectrin breakdown products (SBDPs) that are potential biomarkers for TBI. To further understand these biomarkers, the present study examined (1) the exposure and kinetic characteristics of SBDPs in cerebrospinal fluid (CSF) of adults with severe TBI, and (2) the relationship between these exposure and kinetic metrics and severity of injury. This clinical database study analyzed CSF concentrations of 150-, 145-, and 120-kDa SBDPs in 38 severe TBI patients. Area under the curve (AUC), mean residence time (MRT), maximum concentration (C(max)), time to maximum concentration (T(max)), and half-life (t(1/2)) were determined for each SBDP. Markers of calpain proteolysis (SBDP150 and SBDP145) had a greater median AUC and C(max) and a shorter MRT than SBDP120, produced by caspase-3 proteolysis in the CSF in TBI patients ( p < 0.001). AUC and MRT for SBDP150 and SBDP15 were significantly greater in patients with worse Glasgow Coma Scale (GCS) scores at 24 h after injury compared to those whose GCS scores improved (AUC p=0.013, MRT p=0.001; AUC p=0.009, MRT p=0.021, respectively). A positive correlation was found between patients with longer elevations in intracranial pressure (ICP) measurements of 25mmHg or higher and those with a greater AUC and MRT for all three biomarkers. This is the first study to show that the biomarkers of proteolysis differentially associated with calpain and caspase-3 activity have distinct CSF exposure profiles following TBI that suggest a prominent role for calpain activity. Further studies are being conducted to determine if exposure and kinetic metrics for biofluid-based biomarkers can predict clinical outcome.


Anesthesiology | 2001

Cardiopulmonary Bypass Induces Neurologic and Neurocognitive Dysfunction in the Rat

G. Burkhard Mackensen; Yukie Sato; Bengt Nellgård; Jose A. Pineda; Mark F. Newman; David S. Warner; Hilary P. Grocott

Background Neurocognitive dysfunction is a common complication of cardiac surgery using cardiopulmonary bypass (CPB). Elucidating injury mechanisms and developing neuroprotective strategies have been hampered by the lack of a suitable long-term recovery model of CPB. The purpose of this study was to investigate neurologic and neurocognitive outcome after CPB in a recovery model of CPB in the rat. Methods Fasted rats (n = 10) were subjected to 60 min of normothermic (37.5°C) nonpulsatile CPB using a roller pump and a membrane oxygenator. Sham-operated controls (n = 10) were not subjected to CPB. Neurologic outcome was assessed on days 1, 3, and 12 after CPB using standardized functional testing. Neurocognitive outcome, defined as the time (or latency) to finding a submerged platform in a Morris water maze (an indicator of visual–spatial learning and memory), was evaluated daily from post-CPB days 3–12. Histologic injury in the hippocampus was also evaluated. Results Neurologic outcome was worse in the CPB versus the sham-operated controls at all three measurement intervals (P < 0.001). The CPB group also had longer water maze latencies compared with the sham-operated controls (P = 0.004), indicating significant neurocognitive dysfunction after CPB. No difference in histologic injury between groups was observed. Conclusions CPB caused both neurologic and neurocognitive impairment in a rodent recovery model. This model could potentially facilitate the investigation of CPB-related injury mechanisms and possible neuroprotective interventions.


Annals of Neurology | 2004

Increased susceptibility of S100B transgenic mice to perinatal hypoxia-ischemia

Mark S. Wainwright; Jeffrey M. Craft; W. Sue T. Griffin; Alexander Marks; Jose A. Pineda; Kyle R. Padgett; Linda J. Van Eldik

S100B is a glial‐derived protein that is a well‐established biomarker for severity of neurological injury and prognosis for recovery. Cell‐based and clinical studies have implicated S100B in the initiation and maintenance of a pathological, glial‐mediated proinflammatory state in the central nervous system. However, the relationship between S100B levels and susceptibility to neurological injury in vivo has not been determined. We used S100B transgenic (Tg) and knockout (KO) mice to test the hypothesis that overexpression of S100B increases vulnerability to cerebral hypoxic‐ischemic injury and that this response correlates with an increase in neuroinflammation from activated glia. Postnatal day 8 Tg mice subjected to hypoxia‐ischemia showed a significant increase in mortality compared with KO and wild‐type mice. Tg mice also exhibited greater cerebral injury and volume loss in the ischemic hemisphere after an 8‐day recovery, as assessed by histopathology and magnetic resonance imaging. Measurement of glial fibrillary acidic protein and S100B levels showed a significant increase in the Tg mice, consistent with heightened glial activation and neuroinflammation in response to injury. This is the first demonstration to our knowledge that overexpression of S100B in vivo enhances pathological response to injury. Ann Neurol 2004;56:61–67


The New England Journal of Medicine | 2017

Therapeutic Hypothermia after In-Hospital Cardiac Arrest in Children

Frank W. Moler; Faye S. Silverstein; Richard Holubkov; Beth S. Slomine; James R. Christensen; Vinay Nadkarni; Kathleen L. Meert; Brittan Browning; Victoria L. Pemberton; Kent Page; M. R. Gildea; Barnaby R. Scholefield; Seetha Shankaran; Jamie Hutchison; John T. Berger; George Ofori-Amanfo; Christopher J. L. Newth; Alexis A. Topjian; Kimberly Statler Bennett; Joshua Koch; Nga Pham; N. K. Chanani; Jose A. Pineda; Rick Harrison; Heidi J. Dalton; J. Alten; Charles L. Schleien; Denise M. Goodman; Jerry J. Zimmerman; Utpal Bhalala

Background Targeted temperature management is recommended for comatose adults and children after out‐of‐hospital cardiac arrest; however, data on temperature management after in‐hospital cardiac arrest are limited. Methods In a trial conducted at 37 childrens hospitals, we compared two temperature interventions in children who had had in‐hospital cardiac arrest. Within 6 hours after the return of circulation, comatose children older than 48 hours and younger than 18 years of age were randomly assigned to therapeutic hypothermia (target temperature, 33.0°C) or therapeutic normothermia (target temperature, 36.8°C). The primary efficacy outcome, survival at 12 months after cardiac arrest with a score of 70 or higher on the Vineland Adaptive Behavior Scales, second edition (VABS‐II, on which scores range from 20 to 160, with higher scores indicating better function), was evaluated among patients who had had a VABS‐II score of at least 70 before the cardiac arrest. Results The trial was terminated because of futility after 329 patients had undergone randomization. Among the 257 patients who had a VABS‐II score of at least 70 before cardiac arrest and who could be evaluated, the rate of the primary efficacy outcome did not differ significantly between the hypothermia group and the normothermia group (36% [48 of 133 patients] and 39% [48 of 124 patients], respectively; relative risk, 0.92; 95% confidence interval [CI], 0.67 to 1.27; P=0.63). Among 317 patients who could be evaluated for change in neurobehavioral function, the change in VABS‐II score from baseline to 12 months did not differ significantly between the groups (P=0.70). Among 327 patients who could be evaluated for 1‐year survival, the rate of 1‐year survival did not differ significantly between the hypothermia group and the normothermia group (49% [81 of 166 patients] and 46% [74 of 161 patients], respectively; relative risk, 1.07; 95% CI, 0.85 to 1.34; P=0.56). The incidences of blood‐product use, infection, and serious adverse events, as well as 28‐day mortality, did not differ significantly between groups. Conclusions Among comatose children who survived in‐hospital cardiac arrest, therapeutic hypothermia, as compared with therapeutic normothermia, did not confer a significant benefit in survival with a favorable functional outcome at 1 year. (Funded by the National Heart, Lung, and Blood Institute; THAPCA‐IH ClinicalTrials.gov number, NCT00880087.)

Collaboration


Dive into the Jose A. Pineda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey R. Leonard

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

David D. Limbrick

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark S. Wainwright

Children's Memorial Hospital

View shared research outputs
Top Co-Authors

Avatar

Linda Papa

Orlando Regional Medical Center

View shared research outputs
Top Co-Authors

Avatar

Martin S. Keller

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Allan Doctor

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge