José A. Rodrigues
University of Porto
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José A. Rodrigues.
Phytochemistry | 2002
José Graça; Lukas Schreiber; José A. Rodrigues; Helena Pereira
Cutins from the leaves and fruits of seven plant species were depolymerized by NaOCH(3)-methanolysis. The monomers that were released mostly included C16 and C18 omega-hydroxyacids with mid-chain oxygenated substitutions, namely epoxy and hydroxyl groups. Glycerol was also solubilized as a monomer in quantities that ranged from 1 to 14% of the methanolysates. Partial depolymerization of three cutins by CaO-methanolysis released the same monomers as had been obtained in the previous reaction, as well as small quantities of 1- and 2-monoacylglyceryl esters of omega-hydroxyacids. Molar proportions of glycerol permit the esterification of a significant part of the aliphatic omega-hydroxyacids, thereby possibly playing a major role in the polyester structure of cutin. Glycerol had not previously been known to form part of the cutin polymer.
Journal of Liquid Chromatography & Related Technologies | 1999
Aquiles A. Barros; José A. Rodrigues; Paulo Joaquim Almeida; M. T. Oliva-Teles
The α-diketones glyoxal, methylglyoxal, and diacetyl were determined in selected beer and wine using a procedure involving the use of C18 solid phase extraction columns to remove interferences and derivatization of the compounds with o-phenylenediamine to form quinoxalines, which are separated by HPLC and detected using UV spectrophotometric detection. Interferences were more difficult to remove in the case of beer, due to the higher complexity of the matrix and because the concentrations of the compounds were lower (higher for methylglyoxal and lower for diacetyl, but all in the 10−7 M region). The determination was easier to implement in the case of wine as the typical concentrations of the compounds were about ten times higher, with methylglyoxal being the more abundant compound found.
Journal of Chromatography A | 2013
Inês Maria Valente; Luís Moreira Gonçalves; José A. Rodrigues
The use of the salting-out effect in analytical chemistry is very diverse and can be applied to increase the volatility of the analytes in headspace extractions, to cause the precipitation of proteins in biological samples or to improve the recoveries in liquid-liquid extractions. In the latter, the salting-out process can be used to create a phase separation between water-miscible organic solvents and water. Salting-out assisted liquid-liquid extraction (SALLE) is an advantageous sample preparation technique aiming HPLC-UV analysis when developing analytical methodologies. In fact, some new extraction methodologies like QuEChERS include the SALLE concept. This manuscript discusses another point of view over SALLE with particular emphasis over acetonitrile-water mixtures for HPLC-UV analysis; the influence of the salting-out agents, their concentration and the water-acetonitrile volume ratios were the studied parameters. α-dicarbonyl compounds and beer were used as test analytes and test samples, respectively. The influence of the studied parameters was characterized by the obtained phase separation volume ratio and the fraction of α-dicarbonyls extracted to the acetonitrile phase. Results allowed the distribution of salts within three groups according to the phase separation and their extractability: (1) chlorides and acetates, (2) carbonates and sulfates and (3) magnesium sulfate; of all tested salts, sodium chloride had the highest influence on the α-dicarbonyls fraction extracted.
Journal of Chromatography A | 2010
Luís Moreira Gonçalves; Paulo J. Magalhães; Inês Maria Valente; João Grosso Pacheco; Pavel Dostálek; David Sýkora; José A. Rodrigues; Aquiles A. Barros
In this work, a recently developed extraction technique for sample preparation aiming the analysis of volatile and semi-volatile compounds named gas-diffusion microextraction (GDME) is applied in the chromatographic analysis of aldehydes in beer. Aldehydes-namely acetaldehyde (AA), methylpropanal (MA) and furfural (FA)-were simultaneously extracted and derivatized with 2,4-dinitrophenylhydrazine (DNPH), then the derivatives were separated and analyzed by high-performance liquid chromatography with spectrophotometric detection (HPLC-UV). The identity of the eluted compounds was confirmed by high-performance liquid chromatography-atmospheric pressure chemical ionization-mass-spectrometry detection in the negative ion mode (HPLC-APCI-MS). The developed methodology showed good repeatability (ca. 5%) and linearity as well as good limits of detection (AA-12.3, FA-1.5 and MA 5.4microgL(-1)) and quantification (AA-41, FA-4.9 and MA 18microgL(-1)); it also appears to be competitive in terms of speed and cost of analysis.
Analytica Chimica Acta | 2011
José A. Rodrigues; Carlos Rodrigues; Paulo Joaquim Almeida; Inês Maria Valente; Luís Moreira Gonçalves; Richard G. Compton; Aquiles A. Barros
An improved approach to the anodic stripping voltammetric (ASV) determination of heavy metals, using the hanging mercury drop electrode (HMDE), is reported. It was discovered that using very cathodic accumulation potentials, at which the solvent reduction occurs (overpotential deposition), the voltammetric signals of zinc(II), cadmium(II), lead(II) and copper(II) increase. When compared with the classical methodology a 5 to 10-fold signal increase is obtained. This effect is likely due to both mercury drop oscillation at such cathodic potentials and added local convection at the mercury drop surface caused by the evolution of hydrogen bubbles.
Talanta | 2014
Rui M. Ramos; Inês Maria Valente; José A. Rodrigues
Biogenic amines are nitrogenous organic compounds of low molecular weight that are either formed or metabolized in cells of living organisms and can be found in several food products, being produced mainly by amino acid decarboxylation. When ingested in high concentrations they can induce several health problems in humans. In alcoholic beverages, and especially in wine, they are formed during the vinification process as a result of the action of microorganisms. In this work it is proposed a new methodology for the determination of biogenic amines in wines, which includes a sample preparation approach based on salting-out assisted liquid-liquid extraction, the use of dansyl chloride for the derivatization and chromatographic separation by high-performance liquid chromatography with fluorimetric detection. The salting-out effect is used to promote phase separation between water and a water-miscible organic solvent, while improving the extraction of organic or inorganic species. Several extraction parameters were optimized, such as the dansyl chloride concentration, pH and the effects caused by the order in which the extraction and derivatization were performed. Extraction of amines, and consequent detection, depends on the presence of dansyl chloride in solution prior to extraction. The results showed the possibility to simultaneously perform the extraction and the derivatization, making sample preparation easier and less time-consuming. The methodology was successfully applied to the determination of biogenic amines in five wines (white, red and rosé). This method has the potential to be a good alternative to existing methods since it is cheaper, easier and simplifies the sample preparation step.
Food Additives and Contaminants Part A-chemistry Analysis Control Exposure & Risk Assessment | 2010
Luís Moreira Gonçalves; João Grosso Pacheco; Paulo J. Magalhães; José A. Rodrigues; Aquiles A. Barros
An automated flow injection analysis (FIA) system, based on an initial analyte separation by gas-diffusion and subsequent determination by square-wave voltammetry (SWV) in a flow cell, was developed for the determination of total and free sulfur dioxide (SO2) in wine. The proposed method was compared with two iodometric methodologies (the Ripper method and a simplified method commonly used by the wine industry). The developed method displayed good repeatability (RSD lower than 6%) and linearity (between 10 and 250 mg l−1) as well as a suitable LOD (3 mg l−1) and LOQ (9 mg l−1). A major advantage of this system is that SO2 is directly detected by flow SWV.
Journal of Medicinal Food | 2014
Luís Moreira Gonçalves; Inês Maria Valente; José A. Rodrigues
Cardamonin, as shown by the increasing number of publications, has received growing attention from the scientific community due to the expectations toward its benefits to human health. In this study, research on cardamonin is reviewed, including its natural sources, health promoting aspects, and analytical methods for its determination. Therefore, this article hopes to aid current and future researchers on the search for reliable answers concerning cardamonins value in medicine.
Journal of Natural Products | 2013
Raquel Costa; Rita Negrão; Inês Maria Valente; Ângela Castela; Delfim Duarte; Luísa Guardão; Paulo J. Magalhães; José A. Rodrigues; João Tiago Guimarães; Pedro Gomes; Raquel Soares
Type 1 diabetes mellitus is responsible for metabolic dysfunction, accompanied by chronic inflammation, oxidative stress, and endothelium dysfunction, and is often associated with impaired wound healing. Phenol-rich food improves vascular function, contributing to diabetes prevention. This study has evaluated the effect of phenol-rich beverage consumption in diabetic rats on wound healing, through angiogenesis, inflammation, and oxidative stress modulation. A wound-healing assay was performed in streptozotocin-induced diabetic Wistar rats drinking water, 5% ethanol, and stout beer with and without 10 mg/L xanthohumol (1), for a five-week period. Wounded skin microvessel density was reduced to normal values upon consumption of 1 in diabetic rats, being accompanied by decreased serum VEGF-A and inflammatory markers (IL-1β, NO, N-acetylglucosaminidase). Systemic glutathione and kidney and liver H2O2, 3-nitrotyrosine, and protein carbonylation also decreased to healthy levels after treatment with 1, implying an improvement in oxidative stress status. These findings suggest that consumption of xanthohumol (1) by diabetic animals consistently decreases inflammation and oxidative stress, allowing neovascularization control and improving diabetic wound healing.
Plant Physiology and Biochemistry | 2011
Filipa Queirós; José A. Rodrigues; José Manuel Marques Martins de Almeida; Domingos P.F. Almeida; Fernanda Fidalgo
Changes in lipid peroxidation and ion content and the possible involvement of the antioxidant system in salt tolerance at the cellular level was studied in a potato (Solanum tuberosum L.) callus line grown on 150 mM NaCl (salt-adapted) and in a non-adapted line exposed to 150 mM NaCl (salt-stressed). Salinity reduced the growth rate and increased lipid peroxidation in salt-stressed line, which remained unaltered in the adapted line. Na⁺ and Cl⁻ content increased due to salinity in both lines, but the adapted line displayed greater K⁺/Na⁺ ratio than the stressed one. Total superoxide dismutase (SOD, EC 1.15.1.1), ascorbate peroxidase (APX, EC 1.11.1.11), and glutathione reductase (GR, EC 1.6.4.2) activities decreased in both salt-exposed lines; catalase (CAT, EC 1.11.1.6) activity did not change in the adapted line, but decreased in the stressed cell line. Salinity caused the suppression of one GR isoform, while the isozyme patterns of SOD, APX, and CAT were not affected. Ascorbate and reduced glutathione increased in both salt-exposed calli lines. α-Tocopherol increased as a result of salt exposure, with higher levels found in adapted calli. Electron microscopy showed that neither the structural integrity of the cells nor membrane structure were affected by salinity, but plastids from adapted cells had higher starch content. The results suggest that the enzymic and non-enzymic components of the antioxidant system are differentially modulated by salt. Different concentrations of antioxidant metabolites are more relevant to the adaptive response to salinity in potato calli than the differences in activity of the antioxidant enzymes.