Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose A. Viscarra is active.

Publication


Featured researches published by Jose A. Viscarra.


American Journal of Physiology-regulatory Integrative and Comparative Physiology | 2011

Glut4 is Upregulated Despite Decreased Insulin Signaling during Prolonged Fasting in Northern Elephant Seal Pups

Jose A. Viscarra; José Pablo Vázquez-Medina; Daniel E. Crocker; Rudy M. Ortiz

Postprandial cellular glucose uptake is dependent on an insulin-signaling cascade in muscle and adipose tissue, resulting in the translocation of the insulin-dependent glucose transporter 4 (Glut4) into the plasma membrane. Additionally, extended food deprivation is characterized by suppressed insulin signaling and decreased Glut4 expression. Northern elephant seals are adapted to prolonged fasts characterized by high levels of plasma glucose. To address the hypothesis that the fasting-induced decrease in insulin is associated with reduced insulin signaling in prolonged fasted seals, we compared the adipose protein levels of the cellular insulin-signaling pathway, Glut4 and plasma glucose, insulin, cortisol, and adiponectin concentrations between Early (n = 9; 2-3 wks postweaning) and Late (n = 8; 6-8 wks postweaning) fasted seals. Plasma adiponectin (230 ± 13 vs. 177 ± 11 ng/ml), insulin (2.7 ± 0.4 vs. 1.0 ± 0.1 μU/ml), and glucose (9.8 ± 0.5 vs. 8.0 ± 0.3 mM) decreased, while cortisol (124 ± 6 vs. 257 ± 30 nM) doubled with fasting. Glut4 increased (31%) with fasting despite the significant decreases in the cellular content of phosphatidylinositol 3-kinase as well as phosphorylated insulin receptor, insulin receptor substrate-1, and Akt2. Increased Glut4 may have contributed to the decrease in plasma glucose, but the decrease in insulin and insulin signaling suggests that Glut4 is not insulin-dependent in adipose tissue during prolonged fasting in elephant seals. The reduction of plasma glucose independent of insulin may make these animals an ideal model for the study of insulin resistance.


Endocrinology | 2012

Angiotensin receptor blockade increases pancreatic insulin secretion and decreases glucose intolerance during glucose supplementation in a model of metabolic syndrome.

Ruben Rodriguez; Jose A. Viscarra; Jacqueline Minas; Daisuke Nakano; Akira Nishiyama; Rudy M. Ortiz

Renin-angiotensin system blockade improves glucose intolerance and insulin resistance, which contribute to the development of metabolic syndrome. However, the contribution of impaired insulin secretion to the pathogenesis of metabolic syndrome is not well defined. To assess the contributions of angiotensin receptor type 1 (AT₁) activation and high glucose intake on pancreatic function and their effects on insulin signaling in skeletal muscle and adipose tissue, an oral glucose tolerance test (oGTT) was performed in five groups (n = 10/group) of rats: 1) lean strain-control 2) obese Otsuka Long-Evans Tokushima Fatty (OLETF), 3) OLETF + angiotensin receptor blocker (ARB; 10 mg/kg · d olmesartan for 6 wk; OLETF ARB), 4) OLETF + 5% glucose water (HG) for 6 wk (OLETF HG), and 5) OLETF + HG + ARB (OLETF HG/ARB). The glucose response to the oGTT increased 58% in OLETF compared with lean-strain control, whereas glucose supplementation increased it an additional 26%. Blockade of angiotensin receptor reduced the oGTT response 19% in the ARB-treated groups and increased pancreatic insulin secretion 64 and 113% in OLETF ARB and OLETF HG/ARB, respectively. ARB treatment in OLETF ARB and OLETF HG/ARB did not have an effect on insulin signaling proteins in skeletal muscle; however, it reduced pancreatic AT₁ protein expression 20 and 27%, increased pancreatic glucagon-like peptide-1 (GLP-1) receptor protein expression 41 and 88%, respectively, and increased fasting plasma GLP-1 approximately 2.5-fold in OLETF ARB. The results suggest that improvement of glucose intolerance is independent of an improvement in muscle insulin signaling, but rather by improved glucose-stimulated insulin secretion associated with decreased pancreatic AT₁ activation and increased GLP-1 signaling.


Metabolism-clinical and Experimental | 2013

Cellular mechanisms regulating fuel metabolism in mammals: role of adipose tissue and lipids during prolonged food deprivation

Jose A. Viscarra; Rudy M. Ortiz

Food deprivation in mammals results in profound changes in fuel metabolism and substrate regulation. Among these changes are decreased reliance on the counter-regulatory dynamics by insulin-glucagon due to reduced glucose utilization, and increased concentrations of lipid substrates in plasma to meet the energetic demands of peripheral tissues. As the primary storage site of lipid substrates, adipose tissue must then be a primary contributor to the regulation of metabolism in food deprived states. Through its regulation of lipolysis, adipose tissue influences the availability of carbohydrate, lipid, and protein substrates. Additionally, lipid substrates can act as ligands to various nuclear receptors (retinoid x receptor (RXR), liver x receptor (LXR), and peroxisome proliferator-activated receptor (PPAR)) and exhibit prominent regulatory capabilities over the expression of genes involved in substrate metabolism within various tissues. Therefore, through its control of lipolysis, adipose tissue also indirectly regulates the utilization of metabolic substrates within peripheral tissues. In this review, these processes are described in greater detail and the extent to which adipose tissue and lipid substrates regulate metabolism in food deprived mammals is explored with comments on future directions to better assess the contribution of adipose tissue to metabolism.


Molecular and Cellular Biology | 2016

AMPK Phosphorylates Desnutrin/ATGL and Hormone-Sensitive Lipase To Regulate Lipolysis and Fatty Acid Oxidation within Adipose Tissue

Sun-Joong Kim; Tianyi Tang; Marcia J. Abbott; Jose A. Viscarra; Yuhui Wang; Hei Sook Sul

ABSTRACT The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysis in vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we provide in vivo evidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis.


American Journal of Physiology-heart and Circulatory Physiology | 2013

Angiotensin receptor-mediated oxidative stress is associated with impaired cardiac redox signaling and mitochondrial function in insulin-resistant rats

José Pablo Vázquez-Medina; Irina Popovich; Max Thorwald; Jose A. Viscarra; Ruben Rodriguez; José G. Soñanez-Organis; Lisa Lam; Janos Peti-Peterdi; Daisuke Nakano; Akira Nishiyama; Rudy M. Ortiz

Activation of angiotensin receptor type 1 (AT1) contributes to NADPH oxidase (Nox)-derived oxidative stress during metabolic syndrome. However, the specific role of AT1 in modulating redox signaling, mitochondrial function, and oxidative stress in the heart remains more elusive. To test the hypothesis that AT1 activation increases oxidative stress while impairing redox signaling and mitochondrial function in the heart during diet-induced insulin resistance in obese animals, Otsuka Long Evans Tokushima Fatty (OLETF) rats (n = 8/group) were treated with the AT1 blocker (ARB) olmesartan for 6 wk. Cardiac Nox2 protein expression increased 40% in OLETF compared with age-matched, lean, strain-control Long Evans Tokushima Otsuka (LETO) rats, while mRNA and protein expression of the H₂O₂-producing Nox4 increased 40-100%. ARB treatment prevented the increase in Nox2 without altering Nox4. ARB treatment also normalized the increased levels of protein and lipid oxidation (nitrotyrosine, 4-hydroxynonenal) and increased the redox-sensitive transcription factor Nrf2 by 30% and the activity of antioxidant enzymes (SOD, catalase, GPx) by 50-70%. Citrate synthase (CS) and succinate dehydrogenase (SDH) activities decreased 60-70%, whereas cardiac succinate levels decreased 35% in OLETF compared with LETO, suggesting that mitochondrial function in the heart is impaired during obesity-induced insulin resistance. ARB treatment normalized CS and SDH activities, as well as succinate levels, while increasing AMPK and normalizing Akt, suggesting that AT1 activation also impairs cellular metabolism in the diabetic heart. These data suggest that the cardiovascular complications associated with metabolic syndrome may result from AT1 receptor-mediated Nox2 activation leading to impaired redox signaling, mitochondrial activity, and dysregulation of cellular metabolism in the heart.


The Journal of Experimental Biology | 2012

Decreased expression of adipose CD36 and FATP1 are associated with increased plasma non-esterified fatty acids during prolonged fasting in northern elephant seal pups (Mirounga angustirostris)

Jose A. Viscarra; José Pablo Vázquez-Medina; Ruben Rodriguez; Cory D. Champagne; Sean H. Adams; Daniel E. Crocker; Rudy M. Ortiz

SUMMARY The northern elephant seal pup (Mirounga angustirostris) undergoes a 2–3 month post-weaning fast, during which it depends primarily on the oxidation of fatty acids to meet its energetic demands. The concentration of non-esterified fatty acids (NEFAs) increases and is associated with the development of insulin resistance in late-fasted pups. Furthermore, plasma NEFA concentrations respond differentially to an intravenous glucose tolerance test (ivGTT) depending on fasting duration, suggesting that the effects of glucose on lipid metabolism are altered. However, elucidation of the lipolytic mechanisms including lipase activity during prolonged fasting in mammals is scarce. To assess the impact of fasting and glucose on the regulation of lipid metabolism, adipose tissue and plasma samples were collected before and after ivGTTs performed on early (2 weeks, N=5) and late (6–8 weeks; N=8) fasted pups. Glucose administration increased plasma triglycerides and NEFA concentrations in late-fasted seals, but not plasma glycerol. Fasting decreased basal adipose lipase activity by 50%. Fasting also increased plasma lipase activity twofold and decreased the expressions of CD36, FAS, FATP1 and PEPCK-C by 22–43% in adipose tissue. Plasma acylcarnitine profiling indicated that late-fasted seals display higher incomplete LCFA β-oxidation. Results suggest that long-term fasting induces shifts in the regulation of lipolysis and lipid metabolism associated with the onset of insulin resistance in northern elephant seal pups. Delineation of the mechanisms responsible for this shift in regulation during fasting can contribute to a more thorough understanding of the changes in lipid metabolism associated with dyslipidemia and insulin resistance in mammals.


The Journal of Experimental Biology | 2013

Prolonged food deprivation increases mRNA expression of deiodinase 1 and 2, and thyroid hormone receptor β-1 in a fasting-adapted mammal

Bridget Martinez; José G. Soñanez-Organis; José Pablo Vázquez-Medina; Jose A. Viscarra; Duncan S. MacKenzie; Daniel E. Crocker; Rudy M. Ortiz

SUMMARY Food deprivation in mammals is typically associated with reduced thyroid hormone (TH) concentrations and deiodinase content and activity to suppress metabolism. However, in prolonged-fasted, metabolically active elephant seal pups, TH levels are maintained, if not elevated. The functional relevance of this apparent paradox is unknown and demonstrates variability in the regulation of TH levels, metabolism and function in food-deprived mammals. To address our hypothesis that cellular TH-mediated activity is upregulated with fasting duration, we quantified the mRNA expression and protein content of adipose and muscle deiodinase type I (DI1) and type II (DI2), and TH receptor beta-1 (THrβ-1) after 1, 3 and 7 weeks of fasting in northern elephant seal pups (N=5–7 per week). Fasting did not decrease the concentrations of plasma thyroid stimulating hormone, total triiodothyronine (tT3), free T3, total thyroxine (tT4) or free T4, suggesting that the hypothalamic–pituitary–thyroid axis is not suppressed, but rather maintained during fasting. Mean mRNA expression of adipose DI1 and DI2 increased threefold and fourfold, respectively, and 20- and 30-fold, respectively, in muscle. With the exception of adipose DI1, protein expression of adipose DI2 and muscle DI1 and DI2 increased twofold to fourfold. Fasting also increased adipose (fivefold) and muscle (fourfold) THrβ-1 mRNA expression, suggesting that the mechanisms mediating cellular TH activity are upregulated with prolonged fasting. The data demonstrate a unique, atypical mechanism of TH activity and regulation in mammals adapted to prolonged food deprivation in which the potential responsiveness of peripheral tissues and cellular TH activity are increased, which may contribute to their lipid-based metabolism.


Endocrinology | 2012

Angiotensin Receptor Blockade Recovers Hepatic UCP2 Expression and Aconitase and SDH Activities and Ameliorates Hepatic Oxidative Damage in Insulin Resistant Rats

Priscilla Montez; José Pablo Vázquez-Medina; Ruben Rodriguez; Max Thorwald; Jose A. Viscarra; Lisa Lam; Janos Peti-Peterdi; Daisuke Nakano; Akira Nishiyama; Rudy M. Ortiz

Metabolic syndrome (MetS) is commonly associated with elevated renin-angiotensin system, oxidative stress, and steatohepatitis with down-regulation of uncoupling proteins (UCPs). However, the mechanisms linking renin-angiotensin system, steatosis, and UCP2 to hepatic oxidative damage during insulin resistance are not described. To test the hypothesis that angiotensin receptor activation contributes to decreased hepatic UCP2 expression and aconitase activity and to increased oxidative damage after increased glucose intake in a model of MetS, lean and obese Long Evans rats (n = 10/group) were randomly assigned to the following groups: 1) untreated Long Evans Tokushima Otsuka (lean, strain control), 2) untreated Otsuka Long Evans Tokushima Fatty (OLETF) (MetS model), 3) OLETF + angiotensin receptor blocker (ARB) (10 mg olmesartan/kg·d × 6 wk), 4) OLETF + high glucose (HG) (5% in drinking water × 6 wk), and 5) OLETF + ARB + HG (ARB/HG × 6 wk). HG increased body mass (37%), plasma triglycerides (TGs) (35%), plasma glycerol (87%), plasma free fatty acids (28%), and hepatic nitrotyrosine (74%). ARB treatment in HG decreased body mass (12%), plasma TG (15%), plasma glycerol (23%), plasma free fatty acids (14%), and hepatic TG content (42%), suggesting that angiotensin receptor type 1 (AT1) activation and increased adiposity contribute to the development of obesity-related dyslipidemia. ARB in HG also decreased hepatic nitrotyrosine and increased hepatic UCP2 expression (59%) and aconitase activity (40%), as well as antioxidant enzyme activities (50-120%), suggesting that AT1 activation also contributes to protein oxidation, impaired lipid metabolism, and antioxidant metabolism in the liver. Thus, in addition to promoting obesity-related hypertension, AT1 activation may also impair lipid metabolism and antioxidant capacity, resulting in steatosis via decreased UCP2 and tricarboxylic acid cycle activity.


Physiological Reports | 2013

Insulin and GLP-1 infusions demonstrate the onset of adipose-specific insulin resistance in a large fasting mammal: potential glucogenic role for GLP-1

Jose A. Viscarra; Ruben Rodriguez; José Pablo Vázquez-Medina; Andrew Lee; Michael S. Tift; Stephen K. Tavoni; Daniel E. Crocker; Rudy M. Ortiz

Prolonged food deprivation increases lipid oxidation and utilization, which may contribute to the onset of the insulin resistance associated with fasting. Because insulin resistance promotes the preservation of glucose and oxidation of fat, it has been suggested to be an adaptive response to food deprivation. However, fasting mammals exhibit hypoinsulinemia, suggesting that the insulin resistance‐like conditions they experience may actually result from reduced pancreatic sensitivity to glucose/capacity to secrete insulin. To determine whether fasting results in insulin resistance or in pancreatic dysfunction, we infused early‐ and late‐fasted seals (naturally adapted to prolonged fasting) with insulin (0.065 U/kg), and a separate group of late‐fasted seals with low (10 pmol/L per kg) or high (100 pmol/L per kg) dosages of glucagon‐like peptide‐1 (GLP‐1) immediately following a glucose bolus (0.5 g/kg), and measured the systemic and cellular responses. Because GLP‐1 facilitates glucose‐stimulated insulin secretion, these infusions provide a method to assess pancreatic insulin‐secreting capacity. Insulin infusions increased the phosphorylation of insulin receptor and Akt in adipose and muscle of early‐ and late‐fasted seals; however, the timing of the signaling response was blunted in adipose of late‐fasted seals. Despite the dose‐dependent increases in insulin and increased glucose clearance (high dose), both GLP‐1 dosages produced increases in plasma cortisol and glucagon, which may have contributed to the glucogenic role of GLP‐1. Results suggest that fasting induces adipose‐specific insulin resistance in elephant seal pups, while maintaining skeletal muscle insulin sensitivity, and therefore suggests that the onset of insulin resistance in fasting mammals is an evolved response to cope with prolonged food deprivation.


The Journal of Experimental Biology | 2013

Prolonged fasting activates Nrf2 in post-weaned elephant seals

José Pablo Vázquez-Medina; José G. Soñanez-Organis; Ruben Rodriguez; Jose A. Viscarra; Akira Nishiyama; Daniel E. Crocker; Rudy M. Ortiz

SUMMARY Elephant seals naturally experience prolonged periods of absolute food and water deprivation (fasting). In humans, rats and mice, prolonged food deprivation activates the renin–angiotensin system (RAS) and increases oxidative damage. In elephant seals, prolonged fasting activates RAS without increasing oxidative damage likely due to an increase in antioxidant defenses. The mechanism leading to the upregulation of antioxidant defenses during prolonged fasting remains elusive. Therefore, we investigated whether prolonged fasting activates the redox-sensitive transcription factor Nrf2, which controls the expression of antioxidant genes, and if such activation is potentially mediated by systemic increases in RAS. Blood and skeletal muscle samples were collected from seals fasting for 1, 3, 5 and 7 weeks. Nrf2 activity and nuclear content increased by 76% and 167% at week 7. Plasma angiotensin II (Ang II) and transforming growth factor β (TGF-β) were 5000% and 250% higher at week 7 than at week 1. Phosphorylation of Smad2, an effector of Ang II and TGF signaling, increased by 120% at week 7 and by 84% in response to intravenously infused Ang II. NADPH oxidase 4 (Nox4) mRNA expression, which is controlled by smad proteins, increased 430% at week 7, while Nox4 protein expression, which can activate Nrf2, was 170% higher at week 7 than at week 1. These results demonstrate that prolonged fasting activates Nrf2 in elephant seals and that RAS stimulation can potentially result in increased Nox4 through Smad phosphorylation. The results also suggest that Nox4 is essential to sustain the hormetic adaptive response to oxidative stress in fasting seals.

Collaboration


Dive into the Jose A. Viscarra's collaboration.

Top Co-Authors

Avatar

Rudy M. Ortiz

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hei Sook Sul

University of California

View shared research outputs
Top Co-Authors

Avatar

Yuhui Wang

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge