José Angel Fernández-Higuero
University of the Basque Country
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Angel Fernández-Higuero.
FEBS Letters | 2010
Urko del Castillo; José Angel Fernández-Higuero; Sergio Pérez-Acebrón; Fernando Moro; Arturo Muga
ClpB is a member of the AAA+ superfamily that forms a ring‐shaped homohexamer. Each protomer contains two nucleotide binding domains arranged in two rings that hydrolyze ATP. We extend here previous studies on ClpB nucleotide utilization requirements by using an experimental approach that maximizes random incorporation of different subunits into the protein hexamer. Incorporation of one subunit unable to bind or hydrolyze ATP knocks down the chaperone activity, while the wt hexamer can accommodate two mutant subunits that hydrolyze ATP in only one protein ring. Four subunits seem to build the functional cooperative unit, provided that one of the protein rings contains active nucleotide binding sites.
Journal of Biological Chemistry | 2011
José Angel Fernández-Higuero; Sergio P. Acebrón; Stefka G. Taneva; Urko del Castillo; Fernando Moro; Arturo Muga
ClpB is a hexameric chaperone that solubilizes and reactivates protein aggregates in cooperation with the Hsp70/DnaK chaperone system. Each of the identical protein monomers contains two nucleotide binding domains (NBD), whose ATPase activity must be coupled to exert on the substrate the mechanical work required for its reactivation. However, how communication between these sites occurs is at present poorly understood. We have studied herein the affinity of each of the NBDs for nucleotides in WT ClpB and protein variants in which one or both sites are mutated to selectively impair nucleotide binding or hydrolysis. Our data show that the affinity of NBD2 for nucleotides (Kd = 3–7 μm) is significantly higher than that of NBD1. Interestingly, the affinity of NBD1 depends on nucleotide binding to NBD2. Binding of ATP, but not ADP, to NBD2 increases the affinity of NBD1 (the Kd decreases from ≈160–300 to 50–60 μm) for the corresponding nucleotide. Moreover, filling of the NBD2 ring with ATP allows the cooperative binding of this nucleotide and substrates to the NBD1 ring. Data also suggest that a minimum of four subunits cooperate to bind and reactivate two different aggregated protein substrates.
Biochemical Journal | 2015
Alejandra Aguado; José Angel Fernández-Higuero; Yovana Cabrera; Fernando Moro; Arturo Muga
The hexameric AAA+ (ATPase associated with various cellular activities) chaperone ClpB reactivates protein aggregates in collaboration with the DnaK system. An intriguing aspect of ClpB function is that the active hexamer is unstable and therefore questions how this chaperone uses multiple rounds of ATP hydrolysis to translocate substrates through its central channel. In the present paper, we report the use of biochemical and fluorescence tools to explore ClpB dynamics under different experimental conditions. The analysis of the chaperone activity and the kinetics of subunit exchange between protein hexamers labelled at different protein domains indicates, in contrast with the current view, that (i) ATP favours assembly and ADP dissociation of the hexameric assembly, (ii) subunit exchange kinetics is at least one order of magnitude slower than the ATP hydrolysis rate, (iii) ClpB dynamics and activity are related processes, and (iv) DnaK and substrate proteins regulate the ATPase activity and dynamics of ClpB. These data suggest that ClpB hexamers remain associated during several ATP hydrolysis events required to partially or completely translocate substrates through the protein central channel, and that ClpB dynamics is tuned by DnaK and substrate proteins.
Archives of Biochemistry and Biophysics | 2015
Alejandra Aguado; José Angel Fernández-Higuero; Fernando Moro; Arturo Muga
The oligomeric AAA+ chaperones Hsp104 in yeast and ClpB in bacteria are responsible for the reactivation of aggregated proteins, an activity essential for cell survival during severe stress. The protein disaggregase activity of these members of the Hsp100 family is linked to the activity of chaperones from the Hsp70 and Hsp40 families. The precise mechanism by which these proteins untangle protein aggregates remains unclear. Strikingly, Hsp100 proteins are not present in metazoans. This does not mean that animal cells do not have a disaggregase activity, but that this activity is performed by the Hsp70 system and a representative of the Hsp110 family instead of a Hsp100 protein. This review describes the actual view of Hsp100-mediated aggregate reactivation, including the ATP-induced conformational changes associated with their disaggregase activity, the dynamics of the oligomeric assembly that is regulated by its ATPase cycle and the DnaK system, and the tight allosteric coupling between the ATPase domains within the hexameric ring complexes. The lack of homologs of these disaggregases in metazoans has suggested that they might be used as potential targets to develop antimicrobials. The current knowledge of the human disaggregase machinery and the role of Hsp110 are also discussed.
Scientific Reports | 2016
José Angel Fernández-Higuero; Aitor Etxebarria; Asier Benito-Vicente; A.C. Alves; José Luis R. Arrondo; Helena Ostolaza; Mafalda Bourbon; César Martín
Familial hypercholesterolaemia (FH) is an inherited autosomal dominant disorder resulting from defects in the low-density lipoprotein receptor (LDLR), in the apolipoprotein B (APOB) or in the proprotein convertase subtilisin/kexin type 9 (PCSK9) genes. In the majority of the cases FH is caused by mutations occurring within LDLR, while only few mutations in APOB and PCSK9 have been proved to cause disease. p.(Arg3527Gln) was the first mutation in APOB being identified and characterized. Recently two novel pathogenic APOB variants have been described: p.(Arg1164Thr) and p.(Gln4494del) showing impaired LDLR binding capacity, and diminished LDL uptake. The objective of this work was to analyse the structure of p.(Arg1164Thr) and p.(Gln4494del) variants to gain insight into their pathogenicity. Secondary structure of the human ApoB100 has been investigated by infrared spectroscopy (IR) and LDL particle size both by dynamic light scattering (DLS) and electron microscopy. The results show differences in secondary structure and/or in particle size of p.(Arg1164Thr) and p.(Gln4494del) variants compared with wild type. We conclude that these changes underlie the defective binding and uptake of p.(Arg1164Thr) and p.(Gln4494del) variants. Our study reveals that structural studies on pathogenic variants of APOB may provide very useful information to understand their role in FH disease.
PLOS ONE | 2014
José Angel Fernández-Higuero; Ana M. Salvador; César Martín; José Carlos G. Milicua; José Luis R. Arrondo
Lipoproteins are responsible for cholesterol traffic in humans. Low density lipoprotein (LDL) delivers cholesterol from liver to peripheral tissues. A misleading delivery can lead to the formation of atherosclerotic plaques. LDL has a single protein, apoB-100, that binds to a specific receptor. It is known that the failure associated with a deficient protein-receptor binding leads to plaque formation. ApoB-100 is a large single lipid-associated polypeptide difficulting the study of its structure. IR spectroscopy is a technique suitable to follow the different conformational changes produced in apoB-100 because it is not affected by the size of the protein or the turbidity of the sample. We have analyzed LDL spectra of different individuals and shown that, even if there are not big structural changes, a different pattern in the intensity of the band located around 1617 cm−1 related with strands embedded in the lipid monolayer, can be associated with a different conformational rearrangement that could affect to a protein interacting region with the receptor.
Analytical Biochemistry | 2011
José Angel Fernández-Higuero; Ana M. Salvador; José Luis R. Arrondo; José Carlos G. Milicua
The predominance of small dense low-density lipoprotein (LDL) particles is associated with an increased risk of coronary heart disease. A simple but precise method has been developed, based on electrical conductivity of an isopycnic gradient of KBr, to obtain density values of human LDL fraction. The results obtained can distinguish LDL density populations and their subfractions from different patients. These data were corroborated by Fourier transform infrared spectroscopy (FTIR) (structure) and light-scattering analyses (size).
Scientific Reports | 2018
José Angel Fernández-Higuero; Alejandra Aguado; Judit Perales-Calvo; Fernando Moro; Arturo Muga
The chaperone ClpB in bacteria is responsible for the reactivation of aggregated proteins in collaboration with the DnaK system. Association of these chaperones at the aggregate surface stimulates ATP hydrolysis, which mediates substrate remodeling. However, a question that remains unanswered is whether the bichaperone complex can be selectively activated by substrates that require remodeling. We find that large aggregates or bulky, native-like substrates activates the complex, whereas a smaller, permanently unfolded protein or extended, short peptides fail to stimulate it. Our data also indicate that ClpB interacts differently with DnaK in the presence of aggregates or small peptides, displaying a higher affinity for aggregate-bound DnaK, and that DnaK-ClpB collaboration requires the coupled ATPase-dependent remodeling activities of both chaperones. Complex stimulation is mediated by residues at the β subdomain of DnaK substrate binding domain, which become accessible to the disaggregase when the lid is allosterically detached from the β subdomain. Complex activation also requires an active NBD2 and the integrity of the M domain-ring of ClpB. Disruption of the M-domain ring allows the unproductive stimulation of the DnaK-ClpB complex in solution. The ability of the DnaK-ClpB complex to discrimínate different substrate proteins might allow its activation when client proteins require remodeling.
Journal of Molecular Biology | 2016
Garbiñe Celaya; José Angel Fernández-Higuero; Ianire Martín; Germán Rivas; Fernando Moro; Arturo Muga
Chaperone-mediated protein aggregate reactivation is a complex reaction that depends on the sequential association of molecular chaperones on their interaction with protein aggregates and on substrate refolding. This process could be modulated by the highly crowded intracellular environment, which is known to affect protein conformational change, enzymatic activity, and protein-protein interactions. Here, we report that molecular crowding shapes the chaperone activity of bacterial disaggregase composed of the DnaK system (DnaK, DnaJ, and GrpE) and the molecular motor ClpB. A combination of biophysical and biochemical methods shows that the excluded volume conditions modify the conformation of DnaK and DnaJ without affecting that of GrpE. These crowding-induced conformational rearrangements activate DnaK, enhance the affinity of DnaK for DnaJ, but not for GrpE, and increase the sensitivity of the chaperone activity to cochaperone concentration, explaining the tight control of their relative intracellular amounts. Furthermore, crowding-mediated disordering of the G/F domain of DnaJ facilitates the reversible formation of intermolecular DnaJ conglomerates. These assemblies could drive the formation of Hsp70 clusters at the aggregate surface with the consequent enhancement of the disaggregation efficiency through their coordinated action via entropic pulling. Finally, crowding helps ClpB to outcompete GrpE for DnaK binding, a key aspect of DnaK/ClpB cooperation given the low affinity of the disaggregase for DnaK. Excluded volume conditions promote the formation of the bichaperone complex that disentangles aggregates, enhancing the efficiency of the disaggregation reaction.
Atherosclerosis | 2016
Asier Benito-Vicente; José Angel Fernández-Higuero; José Carlos G. Milicua; Aitor Etxebarria; Helena Ostolaza; José Luis R. Arrondo; César Martín