José Blasco
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Blasco.
Food and Bioprocess Technology | 2012
D. Lorente; Nuria Aleixos; Juan Gómez-Sanchis; Sergio Cubero; O. L. García-Navarrete; José Blasco
Hyperspectral imaging systems are starting to be used as a scientific tool for food quality assessment. A typical hyperspectral image is composed of a set of a relatively wide range of monochromatic images corresponding to continuous wavelengths that normally contain redundant information or may exhibit a high degree of correlation. In addition, computation of the classifiers used to deal with the data obtained from the images can become excessively complex and time-consuming for such high-dimensional datasets, and this makes it difficult to incorporate such systems into an industry that demands standard protocols or high-speed processes. Therefore, recent works have focused on the development of new systems based on this technology that are capable of analysing quality features that cannot be inspected using visible imaging. Many of those studies have also centred on finding new statistical techniques to reduce the hyperspectral images to multispectral ones, which are easier to implement in automatic, non-destructive systems. This article reviews recent works that use hyperspectral imaging for the inspection of fruit and vegetables. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of the internal and external features of these products. Particular attention is paid to the works aimed at reducing the dimensionality of the images, with details of the statistical techniques most commonly used for this task.
Biosystems Engineering | 2003
José Blasco; Nuria Aleixos; Enrique Moltó
Fruit and vegetables are normally presented to consumers in batches. The homogeneity and appearance of these have significant effect on consumer decision. For this reason, the presentation of agricultural produce is manipulated at various stages from the field to the final consumer and is generally oriented towards the cleaning of the product and sorting by homogeneous categories. The project ESPRIT 3, reference 9230 ‘Integrated system for handling, inspection and packing of fruit and vegetable (SHIVA)’ developed a robotic system for the automatic, non-destructive inspection and handling of fruit. The aim of this paper is to report on the machine vision techniques developed at the Instituto Valenciano de Investigaciones Agrarias for the on-line estimation of the quality of oranges, peaches and apples, and to evaluate the efficiency of these techniques regarding the following quality attributes: size, colour, stem location and detection of external blemishes. The segmentation procedure used, based on a Bayesian discriminant analysis, allowed fruits to be precisely distinguished from the background. Thus, determination of size was properly solved. The colours of the fruits estimated by the system were well correlated with the colorimetric index values that are currently used as standards. Good results were obtained in the location of the stem and the detection of blemishes. The classification system was tested on-line with apples obtaining a good performance when classifying the fruit in batches, and a repeatability in blemish detection and size estimation of 86 and 93% respectively. The precision and repeatability of the system, was found to be similar to those of manual grading.
Computers and Electronics in Agriculture | 2002
Nuria Aleixos; José Blasco; F. Navarrón; Enrique Moltó
Citrus are one of the major fruits produced in Spain. Most of this production is exported to Europe for fresh consumption, where consumers increasingly demand best quality. Nowadays, Spanish producers have to compete with other countries with lower production costs. Moreover, inspection and classification tasks in these countries are made manually, which is subjective and varies among different experts or along the day. For these reasons, automatic inspection means, as machine vision, are a priority in Spain, in order to ensure products with an excellent quality. Current commercial sorters based on machine vision only solve the problems that require less computing time, as for instance, sizing or classification in colours. Sometimes they work with low resolution images, in order to achieve high processing speeds. However, this approach reduces the accuracy of the system when estimating the size of the fruit. Another important fact that needs consideration is the possibility of detecting defects on the skin surface using wavelengths that are outside the visible spectrum. This work includes the development of a multispectral camera, which is able to acquire visible and near infrared images from the same scene; the design of specific algorithms and their implementation on a specific board based on two DSPs that work in parallel, which allows to divide the inspection tasks in the different processors, saving processing time. The machine vision system was mounted on a commercial conveyor, and it is able to inspect the size, colour and presence of defects in citrus at a minimum rate of 5 fruits/s. The hardware improvements needed to increase the inspection speed to 10 fruits/s are also described. The experiments, carried out with oranges, mandarins and lemons, demonstrated that the software is able to single the fruit before estimating the size, which is calculated with an error less than 2 mm. To check the performance in colour estimation, mandarins in different maturity grades were used. Results compared with human classification allow 94% coincidence in the worst case (when the fruit is changing colour from green to orange). The system is also capable of correctly classifying lemons and mandarins, attending to the external defects in 93 and 94% of the cases, respectively, following the Spanish citrus standards.
Food and Bioprocess Technology | 2013
D. Lorente; Nuria Aleixos; Juan Gómez-Sanchis; Sergio Cubero; José Blasco
Early automatic detection of fungal infections in post-harvest citrus fruits is especially important for the citrus industry because only a few infected fruits can spread the infection to a whole batch during operations such as storage or exportation, thus causing great economic losses. Nowadays, this detection is carried out manually by trained workers illuminating the fruit with dangerous ultraviolet lighting. The use of hyperspectral imaging systems makes it possible to advance in the development of systems capable of carrying out this detection process automatically. However, these systems present the disadvantage of generating a huge amount of data, which must be selected in order to achieve a result that is useful to the sector. This work proposes a methodology to select features in multi-class classification problems using the receiver operating characteristic curve, in order to detect rottenness in citrus fruits by means of hyperspectral images. The classifier used is a multilayer perceptron, trained with a new learning algorithm called extreme learning machine. The results are obtained using images of mandarins with the pixels labelled in five different classes: two kinds of sound skin, two kinds of decay and scars. This method yields a reduced set of features and a classification success rate of around 89%.
Expert Systems With Applications | 2012
Juan Gómez-Sanchis; José David Martín-Guerrero; Emilio Soria-Olivas; Marcelino Martínez-Sober; Rafael Magdalena-Benedito; José Blasco
Penicillium fungi are among the main defects that may affect the commercialization of citrus fruits. Economic losses in fruit production may become enormous if an early detection of that kind of fungi is not carried out. That early detection is usually based either on UltraViolet light carried out manually. This work presents a new approach based on hyperspectral imagery for defect segmentation. Both the physical device and the data processing (geometric corrections and band selection) are presented. Achieved results using classifiers based on Artificial Neural Networks and Decision Trees show an accuracy around 98%; it shows up the suitability of the proposed approach.
Food and Bioprocess Technology | 2013
D. Lorente; José Blasco; A. J. Serrano; Emilio Soria-Olivas; Nuria Aleixos; Juan Gómez-Sanchis
Hyperspectral imaging systems allow to detect the initial stages of decay caused by fungi in citrus fruit automatically, instead of doing it manually under dangerous ultraviolet illumination, thus preventing the fungal infestation of other sound fruit and, consequently, the enormous economical losses generated. However, these systems present the disadvantage of generating a huge amount of data, which is necessary to select for achieving some result useful for the sector. There are numerous feature selection methods to reduce dimensionality of hyperspectral images. This work compares a feature selection method using the area under the receiver operating characteristic (ROC) curve with other common feature selection techniques, in order to select an optimal set of wavelengths effective in the detection of decay in a citrus fruit using hyperspectral images. This comparative study is done using images of mandarins with the pixels labelled in five different classes: two types of healthy skin, two types of decay and scars, ensuring that the ROC technique generally provides better results than the other methods.
international conference on pattern recognition | 2000
Nuria Aleixos; José Blasco; Enrique Moltó; F. Navarrón
Spain is a major producer of citrus fruit, which must be correctly classified depending on its external quality. Current commercial sorters based on machine vision cannot solve problems like defect detection or correct colour classification due to the low image resolution, which is necessary to achieve adequate production speed. This paper describes a new machine vision system to classify different species of citrus in real time, attending to external quality features of the fruits as size, colour and external defects. A specific hardware has been developed to run the algorithms in parallel, which makes possible work at speed of 10 fruits/s, with an adequate image resolution.
Food and Bioprocess Technology | 2013
A. Vidal; Pau Talens; J. M. Prats-Montalbán; Sergio Cubero; Francisco Albert; José Blasco
A key aspect for the consumer when it comes to deciding on a particular product is the colour. In order to make fruit available to consumers as early as possible, the collection of oranges and mandarins begins before they ripen fully and reach their typical orange colour. As a result, they are therefore subjected to certain degreening treatments, depending on their standard colour citrus index at harvest. Recently, a mobile platform that incorporates a computer vision system capable of pre-sorting the fruit while it is being harvested has been developed as an aid in the harvesting task. However, due to the restrictions of working in the field, the computer vision system developed for this machine is limited in its technology and processing capacity compared to conventional systems. This work shows the optimised algorithms for estimating the colour of citrus in-line that were developed for this mobile platform and its performance is evaluated against that of a spectrophotometer used as a reference in the analysis of colour in food. The results obtained prove that our analysis system predicts the colour index of citrus with a good reliability (R2 = 0.925) working in real time. Findings also show that it is effective for classifying harvested fruits in the field according to their colour.
Food and Bioprocess Technology | 2016
Sergio Cubero; Won Suk Lee; Nuria Aleixos; Francisco Albert; José Blasco
Computer vision systems are becoming a scientific but also a commercial tool for food quality assessment. In the field, these systems can be used to predict yield, as well as for robotic harvesting or the early detection of potentially dangerous diseases. In postharvest handling, it is mostly used for the automated inspection of the external quality of the fruits and for sorting them into commercial categories at very high speed. More recently, the use of hyperspectral imaging is allowing the detection of not only defects in the skin of the fruits but also their association to certain diseases of particular importance. In the research works that use this technology, wavelengths that play a significant role in detecting some of these dangerous diseases are found, leading to the development of multispectral imaging systems that can be used in industry. This article reviews recent works that use colour and non-standard computer vision systems for the automated inspection of citrus. It explains the different technologies available to acquire the images and their use for the non-destructive inspection of internal and external features of these fruits. Particular attention is paid to inspection for the early detection of some dangerous diseases like citrus canker, black spot, decay or citrus Huanglongbing.
Precision Agriculture | 2014
Sergio Cubero; Nuria Aleixos; Francisco Albert; A. Torregrosa; C. Ortiz; O. L. García-Navarrete; José Blasco
The mechanisation and automation of citrus harvesting is considered to be one of the best options to reduce production costs. Computer vision technology has been shown to be a useful tool for fresh fruit and vegetable inspection, and is currently used in post-harvest fruit and vegetable automated grading systems in packing houses. Although computer vision technology has been used in some harvesting robots, it is not commonly utilised in fruit grading during harvesting due to the difficulties involved in adapting it to field conditions. Carrying out fruit inspection before arrival at the packing lines could offer many advantages, such as having an accurate fruit assessment in order to decide among different fruit treatments or savings in the cost of transport and marketing non-commercial fruit. This work presents a computer vision system, mounted on a mobile platform where workers place the harvested fruits, that was specially designed for sorting fruit in the field. Due to the specific field conditions, an efficient and robust lighting system, very low-power image acquisition and processing hardware, and a reduced inspection chamber had to be developed. The equipment is capable of analysing fruit colour and size at a speed of eight fruits per second. The algorithms developed achieved prediction accuracy with an R2 coefficient of 0.993 for size estimation and an R2 coefficient of 0.918 for the colour index.