José Braccini
Universidade Federal do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Braccini.
BMC Genetics | 2014
Mario L. Piccoli; José Braccini; F. F. Cardoso; Medhi Sargolzaei; Steven G. Larmer; F.S. Schenkel
BackgroundStrategies for imputing genotypes from the Illumina-Bovine3K, Illumina-BovineLD (6K), BeefLD-GGP (8K), a non-commercial-15K and IndicusLD-GGP (20K) to either Illumina-BovineSNP50 (50K) or to Illumina-BovineHD (777K) SNP panel, as well as for imputing from 50K, GGP-IndicusHD (90iK) and GGP-BeefHD (90tK) to 777K were investigated. Imputation of low density (<50K) genotypes to 777K was carried out in either one or two steps. Imputation of ungenotyped parents (n = 37 sires) with four or more offspring to the 50K panel was also assessed. There were 2,946 Braford, 664 Hereford and 88 Nellore animals, from which 71, 59 and 88 were genotyped with the 777K panel, while all others had 50K genotypes. The reference population was comprised of 2,735 animals and 175 bulls for 50K and 777K, respectively. The low density panels were simulated by masking genotypes in the 50K or 777K panel for animals born in 2011. Analyses were performed using both Beagle and FImpute software. Genotype imputation accuracy was measured by concordance rate and allelic R2 between true and imputed genotypes.ResultsThe average concordance rate using FImpute was 0.943 and 0.921 averaged across all simulated low density panels to 50K or to 777K, respectively, in comparison with 0.927 and 0.895 using Beagle. The allelic R2 was 0.912 and 0.866 for imputation to 50K or to 777K using FImpute, respectively, and 0.890 and 0.826 using Beagle. One and two steps imputation to 777K produced averaged concordance rates of 0.806 and 0.892 and allelic R2 of 0.674 and 0.819, respectively. Imputation of low density panels to 50K, with the exception of 3K, had overall concordance rates greater than 0.940 and allelic R2 greater than 0.919. Ungenotyped animals were imputed to 50K panel with an average concordance rate of 0.950 by FImpute.ConclusionFImpute accuracy outperformed Beagle on both imputation to 50K and to 777K. Two-step outperformed one-step imputation for imputing to 777K. Ungenotyped animals that have four or more offspring can have their 50K genotypes accurately inferred using FImpute. All low density panels, except the 3K, can be used to impute to the 50K using FImpute or Beagle with high concordance rate and allelic R2.
Canadian Journal of Animal Science | 2018
Mario L. Piccoli; Luiz F. Brito; José Braccini; F. V. Brito; F. F. Cardoso; Jaime Araujo Cobuci; Mehdi Sargolzaei; F.S. Schenkel
Abstract: The statistical methods used in the genetic evaluations are a key component of the process and can be best compared by using simulated data. The latter is especially true in grazing beef cattle production systems, where the number of proven bulls with highly reliable estimated breeding values is limited to allow for a trustworthy validation of genomic predictions. Therefore, we simulated data for 4980 beef cattle aiming to compare single-step genomic best linear unbiased prediction (ssGBLUP), which simultaneously incorporates pedigree, phenotypic, and genomic data into genomic evaluations, and two-step GBLUP (tsGBLUP) procedures and genomic estimated breeding values (GEBVs) blending methods. The greatest increases in GEBV accuracies compared with the parents’ average estimated breeding values (EBVPA) were 0.364 and 0.341 for ssGBLUP and tsGBLUP, respectively. Direct genomic value and GEBV accuracies when using ssGBLUP and tsGBLUP procedures were similar, except for the GEBV accuracies using Hayes’ blending method in tsGBLUP. There was no significant or slight bias in genomic predictions from ssGBLUP or tsGBLUP (using VanRaden’s blending method), indicating that these predictions are on the same scale compared with the true breeding values. Overall, genetic evaluations including genomic information resulted in gains in accuracy >100% compared with the EBVPA. In addition, there were no significant differences between the selected animals (10% males and 50% females) by using ssGBLUP or tsGBLUP.
Animal Production Science | 2018
Gabriel S. Campos; F. A. Reimann; P. I. Schimdt; L. L. Cardoso; B. P. Sollero; José Braccini; M. J. Yokoo; A. A. Boligon; F. F. Cardoso
Data from 127 539 Hereford and Braford cattle were used to compare estimates of genetic parameters for navel, conformation, precocity, muscling and size visual scores at yearling, using linear and threshold animal models. In a second step, these models were cross-validated using a multinomial logistic regression in order to quantify the association between phenotype and genetic merit for each trait. For navel score, higher heritability was obtained with the threshold model (0.42 ± 0.02) in relation to the linear model (0.22 ± 0.02). However, similar heritability was estimated in both models for conformation, precocity, muscling and size, with values of 0.18 ± 0.01, 0.19 ± 0.01, 0.19 ± 0.01 and 0.26 ± 0.01, respectively, using linear model, and of 0.19 ± 0.01, 0.19 ± 0.01, 0.20 ± 0.01, and 0.29 ± 0.01, respectively, using threshold model. For navel score, Spearman correlations between sires’ breeding values predicted using linear and threshold models ranged from 0.60 (1% of the best sires are selected) to 0.96 (all sires are selected). For conformation, precocity, muscling and size scores, low changes in sires’ rank are expected using these models (Spearman correlations >0.86), regardless of the proportion of sires selected. Except for navel with the linear model, the direction of the associations between phenotype and genetic merit were in accordance with its expectation, as there were increases in the phenotype per unit of change in the breeding value. Thus, the threshold model would be recommended to perform genetic evaluation of navel score in this population. However, linear and threshold models showed similar predictive ability for conformation, precocity, muscling and size scores.
Ecology and Evolution | 2017
Robson Jose Cesconeto; Stéphane Joost; Concepta McManus; Samuel Rezende Paiva; Jaime Araujo Cobuci; José Braccini
Abstract Samples of 191 animals from 18 different Brazilian locally adapted swine genetic groups were genotyped using Illumina Porcine SNP60 BeadChip in order to identify selection signatures related to the monthly variation of Brazilian environmental variables. Using BayeScan software, 71 SNP markers were identified as FST outliers and 60 genotypes (58 markers) were found by Samβada software in 371 logistic models correlated with 112 environmental variables. Five markers were identified in both methods, with a Kappa value of 0.073 (95% CI: 0.011–0.134). The frequency of these markers indicated a clear north–south country division that reflects Brazilian environmental differences in temperature, solar radiation, and precipitation. Global spatial territory correlation for environmental variables corroborates this finding (average Morans I = 0.89, range from 0.55 to 0.97). The distribution of alleles over the territory was not strongly correlated with the breed/genetic groups. These results are congruent with previous mtDNA studies and should be used to direct germplasm collection for the National gene bank.
Journal of Animal Science | 2016
Cláudia Damo Bértoli; José Braccini; V. M. Roso
The study assesses the need for and effectiveness of using ridge regression when estimating regression coefficients of covariates representing genetic effects due to breed proportion in a crossbreed genetic evaluation. It also compares 2 ways of selecting the ridge parameters. A large crossbred Angus × Nellore population with 294,045 records for weaning gain and 148,443 records for postweaning gain was used. Phenotypic visual scores varying from 1 to 5 for weaning and postweaning conformation, weaning and postweaning precocity, weaning and postweaning muscling, and scrotal circumference were analyzed. Three models were used to assess the need for ridge regression, having 4, 6, and 8 genetic covariates. All 3 models included the fixed contemporary group effect and random animal, maternal, and permanent environment effects. Model AH included fixed direct and maternal breed additive and the direct and maternal heterosis covariates, model AHE also included direct and maternal epistatic loss covariates, and model AHEC further included direct and maternal complementarity effects. The normal approach is to include these covariates as fixed effects in the model. However, being all derived from breed proportions, they are highly collinear and, consequently, may be poorly estimated. Ridge regression has been proposed as a method of reducing the collinearity. We found that collinearity was not a problem for models AH and AHE. We found a high variance inflation factor, >20, associated with some maternal covariates in the AHEC model reflecting instability of the regression coefficients and that this instability was well addressed by using ridge regression using a ridge parameter calculated from the variance inflation factor.
BMC Genetics | 2017
Mario L. Piccoli; Luiz F. Brito; José Braccini; F. F. Cardoso; Mehdi Sargolzaei; F.S. Schenkel
Proceedings of the World Congress on Genetics Applied to Livestock Production | 2010
F. V. Brito; Mehdi Sargolzaei; José Braccini; Jaime Araujo Cobuci; F.S. Schenkel
Proceedings of the World Congress on Genetics Applied to Livestock Production | 2018
Gabriel S. Campos; Fernando Reimann; Vinícius Silva Junqueira; José Braccini; Leandro Lunardini Cardoso; M. J. Yokoo; B. P. Sollero; Claudia Gulias-Gomes; A. A. Boligon; Alexandre R Caetano; F. F. Cardoso
Tropical Animal Health and Production | 2017
Isabel Cristina Mello da Silva; Bárbara Bremm; Jennifer L. Teixeira; Nathalia S. Costa; Júlio Otávio Jardim Barcellos; José Braccini; Robson Jose Cesconeto; Concepta McManus
Livestock Science | 2015
Cláudia Damo Bértoli; José Braccini; C. McManus; Jaime Araujo Cobuci; Elisandra Lurdes Kern; Mario Piccoli; F.S. Schenkel; Vanerlei Mozaquatro Roso