Jose C.S. dos Santos
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose C.S. dos Santos.
Enzyme and Microbial Technology | 2015
Evelin A. Manoel; Jose C.S. dos Santos; Denise Maria Guimarães Freire; Nazzoly Rueda; Roberto Fernandez-Lafuente
The lipases from Thermomyces lanuginosus and Pseudomonas cepacia have been immobilized on octyl and cyanogen bromide (CNBr) agarose beads. The immobilization on octyl-agarose is slowed with increasing ionic strength, while the immobilization on CNBr is not significantly affected by the ionic strength. The inhibition of the immobilized preparations with diethyl p-nitrophenylphosphate (D-pNPP) was analyzed. The inhibition was more rapid using octyl-lipase preparations than using covalent preparations, and the covalent preparations were much more sensitive to the reaction medium. The addition of detergent increased the inhibition rate of the covalent preparation while an increase on the ionic strength produced a slowdown of the inhibition rate by D-pNPP for both lipases. The effect of the medium on the activity versus fully soluble substrate (methyl mandelate) was in the same direction. The octyl preparations presented a slight decrease in activity when comparing the results using different concentrations of sodium phosphate buffer (between 0.025 and 1M), while the CNBr preparations suffered drastic drops in its activity at high ionic strength. The results confirm that the lipases immobilized on octyl agarose presented their open form stabilized while the covalent preparation maintains a closing/opening equilibrium that may be modulated by altering the medium.
Chemcatchem | 2015
Jose C.S. dos Santos; Oveimar Barbosa; Claudia Ortiz; Ángel Berenguer-Murcia; Rafael C. Rodrigues; Roberto Fernandez-Lafuente
Immobilization and purification of enzymes are usual requirements for their industrial use. Both purification and immobilization have a common factor: they use a solid activated support. Using a support for enzyme purification means having mild conditions for enzyme release and a selective enzyme–support interaction is interesting. When using a support for immobilization, however, enzyme desorption is a problem. The improvement of enzyme features through immobilization is a usual objective (e.g., stability, selectivity). Thus, a support designed for enzyme purification and a support designed for enzyme immobilization may differ significantly. In this review, we will focus our attention on the requirements of a support surface to produce the desired objectives. The ideal physical properties of the matrix, the properties of the introduced reactive groups, the best surface activation degree to reach the desired objective, and the properties of the reactive groups will be discussed.
RSC Advances | 2015
Nazzoly Rueda; Jose C.S. dos Santos; Rodrigo Torres; Claudia Ortiz; Oveimar Barbosa; Roberto Fernandez-Lafuente
A new heterofunctional support, octyl-glyoxyl agarose, is proposed in this study. The supports were prepared by simple periodate oxidation of the commercial octyl-agarose, introducing 25 μmol of glyoxyl groups per wet gram of support. This support was assayed with three different lipases (those from Candida antarctica (form B), Thermomyces lanuginosus (TLL) or Rhizomucor miehei) and the artificial phospholipase Lecitase Ultra. Used at pH 7, the new support maintained as first immobilization step the lipase interfacial activation. Thus, it was possible to have the purification and immobilization of the enzyme in one step. Moreover, stabilization of the open form of the lipase was achieved. The covalent enzyme/support bonds cannot be obtained if the immobilized enzyme was not incubated at alkaline pH value. This incubation at pH 10 of the previously immobilized enzymes produced a smaller decrease in enzyme activity when compared to the direct immobilization of the enzymes on glyoxyl-agarose at pH 10, because the immobilization via interfacial activation promoted a stabilization of the lipases. Except in the case of TLL (covalent attachment involved 70% of the enzyme molecules), covalent immobilization yield was over 80%. The non-covalent attached enzyme molecules were discarded by washings with detergent solutions and the new biocatalysts were compared to the octyl-agarose immobilized enzymes. While the stability in thermal and organic solvents inactivations was increased for Lecitase Ultra, CALB and RML, TLL improved its stability in organic media but its thermal stability decreased after covalent attachment of the interfacially activated enzyme. This stabilization resulted in octyl-glyoxyl-lipase preparations which presented higher activity in the presence of organic solvents. Finally, while octyl-agarose released enzyme molecules after incubation at high temperatures or in the presence of organic solvents and detergents, the covalently immobilized enzyme remained attached to the support even after boiling the enzyme in SDS, eliminating the risks of product contamination.
Chemical Record | 2016
Nazzoly Rueda; Jose C.S. dos Santos; Claudia Ortiz; Rodrigo Torres; Oveimar Barbosa; Rafael C. Rodrigues; Ángel Berenguer-Murcia; Roberto Fernandez-Lafuente
Chemical modification of enzymes and immobilization used to be considered as separate ways to improve enzyme properties. This review shows how the coupled use of both tools may greatly improve the final biocatalyst performance. Chemical modification of a previously immobilized enzyme is far simpler and easier to control than the modification of the free enzyme. Moreover, if protein modification is performed to improve its immobilization (enriching the enzyme in reactive groups), the final features of the immobilized enzyme may be greatly improved. Chemical modification may be directed to improve enzyme stability, but also to improve selectivity, specificity, activity, and even cell penetrability. Coupling of immobilization and chemical modification with site-directed mutagenesis is a powerful instrument to obtain fully controlled modification. Some new ideas such as photoreceptive enzyme modifiers that change their physical properties under UV exposition are discussed.
RSC Advances | 2015
Jose C.S. dos Santos; Nazzoly Rueda; Oveimar Barbosa; Jorge F. Fernández-Sánchez; Antonio L. Medina-Castillo; Teresa Ramon-Marquez; María C. Arias-Martos; Mª del Carmen Millán-Linares; Justo Pedroche; María del Mar Yust; Luciana Rocha Barros Gonçalves; Roberto Fernandez-Lafuente
Divinyl sulfone (DVS) has been used to activate agarose beads. The DVS activated agarose resulted quite stable in the pH range 5–10 at 25 °C under wet conditions, and can react rapidly with α-amides of Cys and His, at pH 5–10, with Lys mainly at pH 10 and with Tyr in a much slower fashion. After blocking with different nucleophiles, the support lost all reactivity, confirming that this protocol could be useful as an enzyme–support reaction end point. Then, chymotrypsin was immobilized on this support at pH 5, 7 and 10. Even though the enzyme was immobilized at all pH values, the immobilization rate decreased with the pH value. The effect of the immobilization on the activity depended on the immobilization pH, at pH 7 the activity decreased (to 50%) more than at pH 10 (by a 25%), while at pH 5 the immobilization has no effect. Then, the effect of blocking with different reagents was analyzed. It was found that blocking with ethylenediamine improved the enzyme activity by 70% and gave the best stability. The stability of all enzyme preparations improved when 24 h incubation was performed at pH 10, but the qualitative stabilization depended on the inactivation conditions. The analysis of the amino acids of the preparation immobilized at pH 10 showed that Lys, Tyr and Cys residues were involved in the immobilization, involving a minimum of 10 residues (glyoxyl agarose gave 4 Lys involved in the immobilization). The new preparation was 4–5 fold more stable than glyoxyl agarose preparation, considered a very stable one, and in some instances was more active than the free enzyme (170% for the enzyme immobilized at pH 10). Thus, DVS activated supports are very promising to permit the multipoint covalent attachment of enzymes, and that way to improve their stability.
Enzyme and Microbial Technology | 2014
Jose C.S. dos Santos; Cristina Garcia-Galan; Rafael C. Rodrigues; Hosiberto B. de Sant’Ana; Luciana Rocha Barros Gonçalves; Roberto Fernandez-Lafuente
Lecitase Ultra has been immobilized on cyanogen bromide agarose (via covalent attachment) and on octyl agarose (via physical adsorption on the hydrophobic support by interfacial activation). Both immobilized preparations have been incubated in dextran sulfate (DS) or polyethylenimine (PEI) solutions to coat the enzyme surface. Then, the activity versus different substrates and under different experimental conditions was evaluated. The PEI coating generally produced a significant increase in enzyme activity, in some cases even by more than a 30-fold factor (using the octyl-Lecitase at pH 5 in the hydrolysis of methyl phenyl acetate). In opposition, the DS coating usually produced some negative effects on the enzyme activity. The rate of irreversible inhibition of the covalent preparation using diethyl p-nitrophenylphosphate did not increase after PEI coating suggesting that the increase in Lecitase activity is not a consequence of the stabilization of the open form of Lecitase. Moreover, the coating greatly increased the stability of the immobilized Lecitase, for example using DS and the covalent preparation, the half-life was increased by a 30-fold factor in 30% acetonitrile. The stabilizing effect was not found in all cases, in certain cases even a certain destabilization is found (e.g., octyl-Lecitase-DS at pH 7). Thus, the effects of the ionic polymer coating strongly depend on the substrate, experimental conditions and immobilization technique employed.
Molecules | 2014
Cristina Garcia-Galan; Oveimar Barbosa; Karel Hernández; Jose C.S. dos Santos; Rafael C. Rodrigues; Roberto Fernandez-Lafuente
A commercial and very hydrophobic styrene-divinylbenzene matrix, MCI GEL® CHP20P, has been compared to octyl-Sepharose® beads as support to immobilize three different enzymes: lipases from Thermomyces lanuginosus (TLL) and from Rhizomucor miehie (RML) and Lecitase® Ultra, a commercial artificial phospholipase. The immobilization mechanism on both supports was similar: interfacial activation of the enzymes versus the hydrophobic surface of the supports. Immobilization rate and loading capacity is much higher using MCI GEL® CHP20P compared to octyl-Sepharose® (87.2 mg protein/g of support using TLL, 310 mg/g using RML and 180 mg/g using Lecitase® Ultra). The thermal stability of all new preparations is much lower than that of the standard octyl-Sepharose® immobilized preparations, while the opposite occurs when the inactivations were performed in the presence of organic co-solvents. Regarding the hydrolytic activities, the results were strongly dependent on the substrate and pH of measurement. Octyl-Sepharose® immobilized enzymes were more active versus p-NPB than the enzymes immobilized on MCI GEL® CHP20P, while RML became 700-fold less active versus methyl phenylacetate. Thus, the immobilization of a lipase on this matrix needs to be empirically evaluated, since it may present very positive effects in some cases while in other cases it may have very negative ones.
Molecules | 2016
Nazzoly Rueda; Tiago Lima de Albuquerque; Rocio Bartolome-Cabrero; Laura Fernandez-Lopez; Rodrigo Torres; Claudia Ortiz; Jose C.S. dos Santos; Oveimar Barbosa; Roberto Fernandez-Lafuente
Two different heterofunctional octyl-amino supports have been prepared using ethylenediamine and hexylendiamine (OCEDA and OCHDA) and utilized to immobilize five lipases (lipases A (CALA) and B (CALB) from Candida antarctica, lipases from Thermomyces lanuginosus (TLL), from Rhizomucor miehei (RML) and from Candida rugosa (CRL) and the phospholipase Lecitase Ultra (LU). Using pH 5 and 50 mM sodium acetate, the immobilizations proceeded via interfacial activation on the octyl layer, after some ionic bridges were established. These supports did not release enzyme when incubated at Triton X-100 concentrations that released all enzyme molecules from the octyl support. The octyl support produced significant enzyme hyperactivation, except for CALB. However, the activities of the immobilized enzymes were usually slightly higher using the new supports than the octyl ones. Thermal and solvent stabilities of LU and TLL were significantly improved compared to the OC counterparts, while in the other enzymes the stability decreased in most cases (depending on the pH value). As a general rule, OCEDA had lower negative effects on the stability of the immobilized enzymes than OCHDA and while in solvent inactivation the enzyme molecules remained attached to the support using the new supports and were released using monofunctional octyl supports, in thermal inactivations this only occurred in certain cases.
Enzyme and Microbial Technology | 2016
María Villalba; Carlos M. Verdasco-Martín; Jose C.S. dos Santos; Roberto Fernandez-Lafuente; Cristina Otero
Industrial use of Novozym 435 in synthesis of structured lipids and biodiesel via alcoholysis is limited by mass transfer effects of the glycerides through immobilized enzymes and its low operational stability under operation conditions. To better understand this, differently modified Novozym 435 preparations, differing in their surface nature and in their interactions with reactants, have been compared in the alcoholysis of Camelina sativa oil. The three modifications performed have been carried out under conditions where all exposed groups of the enzyme have been modified. These modifications were: 2,4,6-trinitrobenzensulfonic acid (Novo-TNBS), ethylendiamine (Novo-EDA) and polyethylenimine (Novo-PEI). Changes in their operational performance are analyzed in terms of changes detected by scan electron microscopy in the support morphology. The hydrophobic nature of the TNBS accelerates the reaction rate; t-ButOH co-solvent swells the macroporous acrylic particles of Lewatit VP OC 1600 in all biocatalysts, except in the case of Novo-PEI. This co-solvent only increases the maximal conversions obtained at 24h using the modified biocatalysts. t-ButOH reduces enzyme inactivation by alcohol and water. In a co-solvent system, these four biocatalysts remain fully active after 14 consecutive reaction cycles of 24h, but only Novo-TNBS yields maximal conversion before cycle 5. Some deposits on biocatalyst particles could be appreciated during reuses, and TNBS derivatization diminishes the accumulation of product deposits on the catalyst surface. Most particles of commercial Novozym(®) 435 are broken after operation for 14 reaction cycles. The broken particles are fully active, but they cause problems of blockage in filtration operations and column reactors. The three derivatizations studied make the matrix particles more resistant to rupture.
RSC Advances | 2015
Jose C.S. dos Santos; Nazzoly Rueda; Alfredo Sánchez; Reynaldo Villalonga; Luciana Rocha Barros Gonçalves; Roberto Fernandez-Lafuente
The lipase B from C. antarctica (CALB) has been immobilized on divinylsulfone (DVS) activated agarose beads under different conditions (pH 5–10). In the presence of 0.3% Triton X-100, the immobilization rate was rapid at pH 10 and the slowest one was at pH 5. Incubation at pH 10 for 72 h of the immobilized enzymes before blocking of the support with ethylenediamine permitted improvement of the enzyme stability. Enzyme features (activity, stability, specificity versus different substrates, effect of the pH on enzyme properties) were quite different on the different CALB preparations, suggesting the different orientation of the enzyme. The alkaline incubation produced an increase in enzyme activity with some substrates, and some of the DVS-CALB preparations exhibited a higher specific activity than the octyl-preparations. The indirect fluorescence spectrum of the different immobilized preparations confirmed that different structures of the CALB molecules were generated after immobilization.