Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Cano is active.

Publication


Featured researches published by Jose Cano.


Nature Medicine | 2006

Long-term survival of neonatal porcine islets in nonhuman primates by targeting costimulation pathways

Kenneth Cardona; Gregory S. Korbutt; Zvonimir Milas; James Lyon; Jose Cano; Wanhong Jiang; Hameeda Bello-Laborn; Brad V Hacquoil; Elizabeth Strobert; Shivaprakash Gangappa; Collin J. Weber; Thomas C. Pearson; Ray V. Rajotte; Christian P. Larsen

We evaluated the ability of neonatal porcine islets to engraft and restore glucose control in pancreatectomized rhesus macaques. Although porcine islets transplanted into nonimmunosuppressed macaques were rapidly rejected by a process consistent with cellular rejection, recipients treated with a CD28-CD154 costimulation blockade regimen achieved sustained insulin independence (median survival, >140 days) without evidence of porcine endogenous retrovirus dissemination. Thus, neonatal porcine islets represent a promising solution to the crucial supply problem in clinical islet transplantation.


American Journal of Transplantation | 2011

CD40‐Specific Costimulation Blockade Enhances Neonatal Porcine Islet Survival in Nonhuman Primates

Peter Thompson; Kenneth Cardona; Maria C. Russell; Idelberto R. Badell; Virginia Oliva Shaffer; Gregory S. Korbutt; G. R. Rayat; Jose Cano; M. Song; Wanhong Jiang; Elizabeth Strobert; Ray V. Rajotte; Thomas C. Pearson; Allan D. Kirk; Christian P. Larsen

The widespread clinical implementation of alloislet transplantation as therapy for type 1 diabetes has been hindered by the lack of suitable islet donors. Pig‐to‐human islet xenotransplantation is one strategy with potential to alleviate this shortage. Long‐term survival of porcine islets has been achieved using CD154‐specific antibodies to interrupt the CD40/CD154 costimulation pathway; however, CD154‐specific antibodies seem unlikely candidates for clinical translation. An alternative strategy for CD40/CD154 pathway interruption is use of CD40‐specific antibodies. Herein, we evaluate the ability of a chimeric CD40‐specific monoclonal antibody (Chi220) to protect islet xenografts. Neonatal porcine islets (∼50 000 IEQ/kg) were transplanted intraportally into pancreatectomized diabetic macaques. Immunosuppression consisted of induction therapy with Chi220 and the IL‐2 receptor‐specific antibody basiliximab, and maintenance therapy with sirolimus and the B7‐specific fusion protein belatacept. Chi220 effectively promoted xenoislet engraftment and survival, with five of six treated recipients achieving insulin‐independent normoglycemia (median rejection‐free survival 59 days; mean 90.8 days, maximum 203 days). No thromboembolic phenomena were observed. CD40 represents a promising alternative to CD154 as a therapeutic target, and the efficacy of CD40‐specific antibodies in islet xenotransplantation warrants further investigation.


American Journal of Transplantation | 2011

Islet xenotransplantation using gal-deficient neonatal donors improves engraftment and function.

Peter Thompson; Idelberto R. Badell; M Lowe; Jose Cano; M. Song; F. Leopardi; Jose G. Avila; R. Ruhil; Elizabeth Strobert; Gregory S. Korbutt; G. R. Rayat; Ray V. Rajotte; Neal N. Iwakoshi; Christian P. Larsen; Allan D. Kirk

Significant deficiencies in understanding of xenospecific immunity have impeded the success of preclinical trials in xenoislet transplantation. Although galactose‐α1,3‐galactose, the gal epitope, has emerged as the principal target of rejection in pig‐to‐primate models of solid organ transplant, the importance of gal‐specific immunity in islet xenotransplant models has yet to be clearly demonstrated. Here, we directly compare the immunogenicity, survival and function of neonatal porcine islets (NPIs) from gal‐expressing wild‐type (WT) or gal‐deficient galactosyl transferase knockout (GTKO) donors. Paired diabetic rhesus macaques were transplanted with either WT (n = 5) or GTKO (n = 5) NPIs. Recipient blood glucose, transaminase and serum xenoantibody levels were used to monitor response to transplant. Four of five GTKO versus one of five WT recipients achieved insulin‐independent normoglycemia; transplantation of WT islets resulted in significantly greater transaminitis. The WT NPIs were more susceptible to antibody and complement binding and destruction in vitro. Our results confirm that gal is an important variable in xenoislet transplantation. The GTKO NPI recipients have improved rates of normoglycemia, likely due to decreased susceptibility of xenografts to innate immunity mediated by complement and preformed xenoantibody. Therefore, the use of GTKO donors is an important step toward improved consistency and interpretability of results in future xenoislet studies.


Journal of Clinical Investigation | 2010

LFA-1–specific therapy prolongs allograft survival in rhesus macaques

Idelberto R. Badell; Maria C. Russell; Peter Thompson; Alexandra P. Turner; T Weaver; Jennifer Robertson; Jose G. Avila; Jose Cano; Brandi E. Johnson; M. Song; F. Leopardi; Sarah Swygert; Elizabeth Strobert; Mandy L. Ford; Allan D. Kirk; Christian P. Larsen

Outcomes in transplantation have been limited by suboptimal long-term graft survival and toxicities associated with current immunosuppressive approaches. T cell costimulation blockade has shown promise as an alternative strategy to avoid the side effects of conventional immunosuppressive therapies, but targeting CD28-mediated costimulation alone has proven insufficient to prevent graft rejection in primates. Donor-specific memory T (TM) cells have been implicated in costimulation blockade-resistant transplant rejection, due to their enhanced effector function and decreased reliance on costimulatory signaling. Thus, we have tested a potential strategy to overcome TM cell-driven rejection by targeting molecules preferentially expressed on these cells, such as the adhesion molecule lymphocyte function-associated antigen 1 (LFA-1). Here, we show that short-term treatment (i.e., induction therapy) with the LFA-1-specific antibody TS-1/22 in combination with either basiliximab (an IL-2Rα-specific mAb) and sirolimus (a mammalian target of rapamycin inhibitor) or belatacept (a high-affinity variant of the CD28 costimulation-blocker CTLA4Ig) prolonged islet allograft survival in nonhuman primates relative to control treatments. Moreover, TS-1/22 masked LFA-1 on TM cells in vivo and inhibited the generation of alloproliferative and cytokine-producing effector T cells that expressed high levels of LFA-1 in vitro. These results support the use of LFA-1-specific induction therapy to neutralize costimulation blockade-resistant populations of T cells and further evaluation of LFA-1-specific therapeutics for use in transplantation.


American Journal of Transplantation | 2007

Engraftment of adult porcine islet xenografts in diabetic nonhuman primates through targeting of costimulation pathways

Kenneth Cardona; Zvonimir Milas; Elizabeth Strobert; Jose Cano; Wanhong Jiang; S. A. Safley; Shivaprakash Gangappa; B. J. Hering; Collin J. Weber; Thomas C. Pearson; Christian P. Larsen

Recent advances in human allogeneic islet transplantation have established β‐cell replacement therapy as a potentially viable treatment option for individuals afflicted with Type 1 diabetes. Two recent successes, one involving neonatal porcine islet xenografts transplanted into diabetic rhesus macaques treated with a costimulation blockade‐based regimen and the other involving diabetic cynomolgus monkeys transplanted with adult porcine islet xenografts treated with an alternative multidrug immunosuppressive regimen have demonstrated the feasibility of porcine islet xenotransplantation in nonhuman primate models. In the current study, we assessed whether transplantation of adult porcine islet xenografts into pancreatectomized macaques, under the cover of a costimulation blockade‐based immunosuppressive regimen (CD28 and CD154 blockade), could correct hyperglycemia. Our findings suggest that the adult porcine islets transplanted into rhesus macaques receiving a costimulation blockade‐based regimen are not uniformly subject to hyperacute rejection, can engraft (2/5 recipients), and have the potential to provide sustained normoglycemia. These results provide further evidence to suggest that porcine islet xenotransplantation may be an attainable strategy to alleviate the islet supply crisis that is one of the principal obstacles to large‐scale application of islet replacement therapy in the treatment of Type 1 diabetes.


American Journal of Transplantation | 2010

Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation

Nicole A. Turgeon; Jose G. Avila; Jose Cano; Jj Hutchinson; Idelberto R. Badell; Andrew J. Page; Andrew B. Adams; Mh Sears; Ph Bowen; Allan D. Kirk; Thomas C. Pearson; Christian P. Larsen

Islet transplantation is an experimental therapy for selected patients with type 1 diabetes (T1DM). It remains limited by immunosuppressive drug toxicity, progressive loss of insulin independence, allosensitization and the need for multiple islet donors. We describe our experience with an efalizumab‐based immunosuppressive regimen as compared to the prevailing standard regimen, the Edmonton protocol. Twelve patients with T1DM received islet transplants: eight were treated with the Edmonton protocol; four were treated with daclizumab induction, a 6‐month course of tacrolimus, and maintenance with efalizumab and mycophenolate mofetil. The primary endpoint was insulin independence after one islet infusion. Only two Edmonton protocol treated patients achieved the primary endpoint; six required islets from multiple donors, and all experienced leukopenia, mouth ulcers, anemia, diarrhea and hypertransaminasemia. Four became allosensitized. All patients treated with the efalizumab‐based regimen achieved insulin independence with normal hemoglobin A1c after a single islet cell infusion and remained insulin independent while on efalizumab. These patients experienced significantly fewer side effects and none became allosensitized. Trial continuation was terminated by withdrawal of efalizumab from the market. These data suggest that this efalizumab‐based regimen prevents islet rejection, is well tolerated, and allows for single donor islet transplantation.


American Journal of Transplantation | 2012

Nondepleting Anti‐CD40‐Based Therapy Prolongs Allograft Survival in Nonhuman Primates

Idelberto R. Badell; Peter Thompson; Alexandra P. Turner; Maria C. Russell; Jose G. Avila; Jose Cano; Jan Marie Robertson; F. Leopardi; Elizabeth Strobert; Neal N. Iwakoshi; Keith A. Reimann; Mandy L. Ford; Allan D. Kirk; Christian P. Larsen

Costimulation blockade of the CD40/CD154 pathway has been effective at preventing allograft rejection in numerous transplantation models. This strategy has largely depended on mAbs directed against CD154, limiting the potential for translation due to its association with thromboembolic events. Though targeting CD40 as an alternative to CD154 has been successful at preventing allograft rejection in preclinical models, there have been no reports on the effects of CD40‐specific agents in human transplant recipients. This delay in clinical translation may in part be explained by the presence of cellular depletion with many CD40‐specific mAbs. As such, the optimal biologic properties of CD40‐directed immunotherapy remain to be determined. In this report, we have characterized 3A8, a human CD40‐specific mAb and evaluated its efficacy in a rhesus macaque model of islet cell transplantation. Despite partially agonistic properties and the inability to block CD40 binding of soluble CD154 (sCD154) in vitro, 3A8‐based therapy markedly prolonged islet allograft survival without depleting B cells. Our results indicate that the allograft‐protective effects of CD40‐directed costimulation blockade do not require sCD154 blockade, complete antagonism or cellular depletion, and serve to support and guide the continued development of CD40‐specific agents for clinical translation.


American Journal of Transplantation | 2012

Alternative immunomodulatory strategies for xenotransplantation: CD40/154 pathway-sparing regimens promote xenograft survival.

Peter Thompson; Idelberto R. Badell; M Lowe; Alexandra P. Turner; Jose Cano; Jose G. Avila; Agnes M. Azimzadeh; Xiangfei Cheng; Richard N. Pierson; Brandi E. Johnson; Jan Marie Robertson; M. Song; F. Leopardi; Elizabeth Strobert; Gregory S. Korbutt; G. R. Rayat; Ray V. Rajotte; Christian P. Larsen; Allan D. Kirk

Immunosuppressive therapies that block the CD40/CD154 costimulatory pathway have proven to be uniquely effective in preclinical xenotransplant models. Given the challenges facing clinical translation of CD40/CD154 pathway blockade, we examined the efficacy and tolerability of CD40/CD154 pathway‐sparing immunomodulatory strategies in a pig‐to‐nonhuman primate islet xenotransplant model. Rhesus macaques were rendered diabetic with streptozocin and given an intraportal infusion of ∼50 000 islet equivalents/kg wild‐type neonatal porcine islets. Base immunosuppression for all recipients included maintenance therapy with belatacept and mycophenolate mofetil plus induction with basiliximab and LFA‐1 blockade. Cohort 1 recipients (n = 3) were treated with the base regimen alone; cohort 2 recipients (n = 5) were additionally treated with tacrolimus induction and cohort 3 recipients (n = 5) were treated with alefacept in place of basiliximab, and more intense LFA‐1 blockade. Three of five recipients in both cohorts 2 and 3 achieved sustained insulin‐independent normoglycemia (median rejection‐free survivals 60 and 111 days, respectively), compared to zero of three recipients in cohort 1. These data show that CD40/CD154 pathway‐sparing regimens can promote xenoislet survival. Further optimization of these strategies is warranted to aid the clinical translation of islet xenotransplantation.


Diabetes | 2016

National Institutes of Health–Sponsored Clinical Islet Transplantation Consortium Phase 3 Trial: Manufacture of a Complex Cellular Product at Eight Processing Facilities

Camillo Ricordi; Julia S. Goldstein; A. N. Balamurugan; Gregory L. Szot; Tatsuya Kin; Chengyang Liu; Christine W. Czarniecki; Barbara Barbaro; Nancy D. Bridges; Jose Cano; William R. Clarke; Thomas L. Eggerman; Lawrence G. Hunsicker; Dixon B. Kaufman; Aisha Khan; David Erick Lafontant; Elina Linetsky; Xunrong Luo; James F. Markmann; Ali Naji; Olle Korsgren; Jose Oberholzer; Nicole A. Turgeon; Daniel Brandhorst; Andrew S. Friberg; Ji Lei; Ling Jia Wang; Joshua J. Wilhelm; Jamie Willits; Xiaomin Zhang

Eight manufacturing facilities participating in the National Institutes of Health–sponsored Clinical Islet Transplantation (CIT) Consortium jointly developed and implemented a harmonized process for the manufacture of allogeneic purified human pancreatic islet (PHPI) product evaluated in a phase 3 trial in subjects with type 1 diabetes. Manufacturing was controlled by a common master production batch record, standard operating procedures that included acceptance criteria for deceased donor organ pancreata and critical raw materials, PHPI product specifications, certificate of analysis, and test methods. The process was compliant with Current Good Manufacturing Practices and Current Good Tissue Practices. This report describes the manufacturing process for 75 PHPI clinical lots and summarizes the results, including lot release. The results demonstrate the feasibility of implementing a harmonized process at multiple facilities for the manufacture of a complex cellular product. The quality systems and regulatory and operational strategies developed by the CIT Consortium yielded product lots that met the prespecified characteristics of safety, purity, potency, and identity and were successfully transplanted into 48 subjects. No adverse events attributable to the product and no cases of primary nonfunction were observed.


American Journal of Transplantation | 2012

CTLA4Ig Prevents Alloantibody Formation Following Nonhuman Primate Islet Transplantation Using the CD40-Specific Antibody 3A8

Idelberto R. Badell; Maria C. Russell; Kenneth Cardona; Virginia Oliva Shaffer; Alexandra P. Turner; Jose G. Avila; Jose Cano; F. Leopardi; M. Song; Elizabeth Strobert; Mandy L. Ford; Thomas C. Pearson; Allan D. Kirk; Christian P. Larsen

Islet transplantation to treat type 1 diabetes has been limited in part by toxicities of current immunosuppression and recipient humoral sensitization. Blockade of the CD28/CD80/86 and CD40/CD154 pathways has shown promise to remedy both these limitations, but translation has been hampered by difficulties in translating CD154‐directed therapies. Prior CD40‐directed regimens have led to prolonged islet survival, but fail to prevent humoral allosensitization. We therefore evaluated the addition of CTLA4Ig to a CD40 blockade‐based regimen in nonhuman primate (NHP) alloislet transplantation. Diabetic rhesus macaques were transplanted allogeneic islets using the CD40‐specific antibody 3A8, basiliximab induction, and sirolimus with or without CTLA4Ig maintenance therapy. Allograft survival was determined by fasting blood glucose levels and flow cytometric techniques were used to test for donor‐specific antibody (DSA) formation. CTLA4Ig plus 3A8, basiliximab and sirolimus was well tolerated and induced long‐term islet allograft survival. The addition of CTLA4Ig prevented DSA formation, but did not facilitate withdrawal of the 3A8‐based regimen. Thus, CTLA4Ig combines with a CD40‐specific regimen to prevent DSA formation in NHPs, and offers a potentially translatable calcineurin inhibitor‐free protocol inclusive of a single investigational agent for use in clinical islet transplantation without relying upon CD154 blockade.

Collaboration


Dive into the Jose Cano's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elizabeth Strobert

Yerkes National Primate Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge