José Carlos Jiménez-López
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Carlos Jiménez-López.
PLOS ONE | 2010
Simeon O. Kotchoni; José Carlos Jiménez-López; Dongying Gao; Vincent Edwards; Emma W. Gachomo; Venu M. Margam; Manfredo J. Seufferheld
The completion of the rice genome sequence has made it possible to identify and characterize new genes and to perform comparative genomics studies across taxa. The aldehyde dehydrogenase (ALDH) gene superfamily encoding for NAD(P)+-dependent enzymes is found in all major plant and animal taxa. However, the characterization of plant ALDHs has lagged behind their animal- and prokaryotic-ALDH homologs. In plants, ALDHs are involved in abiotic stress tolerance, male sterility restoration, embryo development and seed viability and maturation. However, there is still no structural property-dependent functional characterization of ALDH protein superfamily in plants. In this paper, we identify members of the rice ALDH gene superfamily and use the evolutionary nesting events of retrotransposons and protein-modeling–based structural reconstitution to report the genetic and molecular and structural features of each member of the rice ALDH superfamily in abiotic/biotic stress responses and developmental processes. Our results indicate that rice-ALDHs are the most expanded plant ALDHs ever characterized. This work represents the first report of specific structural features mediating functionality of the whole families of ALDHs in an organism ever characterized.
PLOS ONE | 2012
José Carlos Jiménez-López; Sonia Morales; Antonio Jesús Castro; Dieter Volkmann; María Isabel Rodríguez-García; Juan de Dios Alché
Profilin, a multigene family involved in actin dynamics, is a multiple partners-interacting protein, as regard of the presence of at least of three binding domains encompassing actin, phosphoinositide lipids, and poly-L-proline interacting patches. In addition, pollen profilins are important allergens in several species like Olea europaea L. (Ole e 2), Betula pendula (Bet v 2), Phleum pratense (Phl p 12), Zea mays (Zea m 12) and Corylus avellana (Cor a 2). In spite of the biological and clinical importance of these molecules, variability in pollen profilin sequences has been poorly pointed out up until now. In this work, a relatively high number of pollen profilin sequences have been cloned, with the aim of carrying out an extensive characterization of their polymorphism among 24 olive cultivars and the above mentioned plant species. Our results indicate a high level of variability in the sequences analyzed. Quantitative intra-specific/varietal polymorphism was higher in comparison to inter-specific/cultivars comparisons. Multi-optional posttranslational modifications, e.g. phosphorylation sites, physicochemical properties, and partners-interacting functional residues have been shown to be affected by profilin polymorphism. As a result of this variability, profilins yielded a clear taxonomic separation between the five plant species. Profilin family multifunctionality might be inferred by natural variation through profilin isovariants generated among olive germplasm, as a result of polymorphism. The high variability might result in both differential profilin properties and differences in the regulation of the interaction with natural partners, affecting the mechanisms underlying the transmission of signals throughout signaling pathways in response to different stress environments. Moreover, elucidating the effect of profilin polymorphism in adaptive responses like actin dynamics, and cellular behavior, represents an exciting research goal for the future.
Gene | 2012
Simeon O. Kotchoni; José Carlos Jiménez-López; Adéchola Pierre Polycarpe Kayodé; Emma W. Gachomo; Lamine Baba-Moussa
Aldehyde dehydrogenases (ALDHs) are members of NAD(P)(+)-dependent protein superfamily that catalyze the oxidation of a wide range of endogenous and exogenous highly reactive aliphatic and aromatic aldehyde molecules to their corresponding non toxic carboxylic acids. Research evidence has shown that ALDHs represent a promising class of genes to improve growth development, seed storage and environmental stress adaptation in higher plants. The recently completed genome sequences of several plant species have resulted in the identification of a large number of ALDH genes, most of which still need to be functionally characterized. In this paper, we identify members of the ALDH gene superfamily in soybean genome, and provide a unified nomenclature for the entire soybean ALDH gene families. The soybean genome contains 18 unique ALDH sequences encoding members of five ALDH families involved in a wide range of metabolic and molecular detoxification pathways. In addition, we describe the biochemical requirements and cellular metabolic pathways of selected members of ALDHs in soybean responses to environmental stress conditions.
BMC Plant Biology | 2014
Emma W. Gachomo; José Carlos Jiménez-López; Lyla Jno Baptiste; Simeon O. Kotchoni
BackgroundWD40 domains have been found in a plethora of eukaryotic proteins, acting as scaffolding molecules assisting proper activity of other proteins, and are involved in multi-cellular processes. They comprise several stretches of 44-60 amino acid residues often terminating with a WD di-peptide. They act as a site of protein-protein interactions or multi-interacting platforms, driving the assembly of protein complexes or as mediators of transient interplay among other proteins. In Arabidopsis, members of WD40 protein superfamily are known as key regulators of plant-specific events, biologically playing important roles in development and also during stress signaling.ResultsUsing reverse genetic and protein modeling approaches, we characterize GIGANTUS1 (GTS1), a new member of WD40 repeat protein in Arabidopsis thaliana and provide evidence of its role in controlling plant growth development. GTS1 is highly expressed during embryo development and negatively regulates seed germination, biomass yield and growth improvement in plants. Structural modeling analysis suggests that GTS1 folds into a β-propeller with seven pseudo symmetrically arranged blades around a central axis. Molecular docking analysis shows that GTS1 physically interacts with two ribosomal protein partners, a component of ribosome Nop16, and a ribosome-biogenesis factor L19e through β-propeller blade 4 to regulate cell growth development.ConclusionsOur results indicate that GTS1 might function in plant developmental processes by regulating ribosomal structural features, activities and biogenesis in plant cells. Our results suggest that GIGANTUS1 might be a promising target to engineer transgenic plants with higher biomass and improved growth development for plant-based bioenergy production.
BMC Plant Biology | 2015
Rhonda C. Foley; José Carlos Jiménez-López; Lars G. Kamphuis; James K. Hane; Su Melser; Karam B. Singh
BackgroundThe major proteins in lupin seeds are conglutins that have primary roles in supplying carbon, sulphur and nitrogen and energy for the germinating seedling. They fall into four families; α, β, γ and δ. Interest in these conglutins is growing as family members have been shown to have beneficial nutritional and pharmaceutical properties.ResultsAn in-depth transcriptome and draft genome from the narrow-leafed lupin (NLL; Lupinus angustifolius) variety, Tanjil, were examined and 16 conglutin genes were identified. Using RNAseq data sets, the structure and expression of these 16 conglutin genes were analysed across eight lupin varieties from five lupin species. Phylogenic analysis suggest that the α and γ conglutins diverged prior to lupin speciation while β and δ members diverged both prior and after speciation. A comparison of the expression of the 16 conglutin genes was performed, and in general the conglutin genes showed similar levels of RNA expression among varieties within species, but quite distinct expression patterns between lupin species. Antibodies were generated against the specific conglutin families and immunoblot analyses were used to compare the levels of conglutin proteins in various tissues and during different stages of seed development in NLL, Tanjil, confirming the expression in the seed. This analysis showed that the conglutins were expressed highly at the mature seed stage, in all lupin species, and a range of polypeptide sizes were observed for each conglutin family.ConclusionsThis study has provided substantial information on the complexity of the four conglutin families in a range of lupin species in terms of their gene structure, phylogenetic relationships as well as their relative RNA and protein abundance during seed development. The results demonstrate that the majority of the heterogeneity of conglutin polypeptides is likely to arise from post-translational modification from a limited number of precursor polypeptides rather than a large number of different genes. Overall, the results demonstrate a high degree of plasticity for conglutin expression during seed development in different lupin species.
Molecular Biology Reports | 2012
Emma W. Gachomo; José Carlos Jiménez-López; Adéchola Pierre Polycarpe Kayodé; Lamine Baba-Moussa; Simeon O. Kotchoni
Plant defensins represent a major innate immune protein superfamily with strong inhibitory effects on infectious diseases of humans, antifungal/antibacterial activities, proteinase and insect amylase inhibitory activities. They are generally defined by their conserved cysteine scaffold with α-helix and triple strand anti parallel β-sheet connected to the scaffold. With the genome of more plant species being fully sequenced, significant information about newly sequenced defensin proteins has been revealed. In this paper, we identify members of defensin protein families across plant species and use protein-modeling-based structural reconstitution to reveal specific three dimensional hidden features of plant defensins mediating defense responses and other interesting biological activities in plants. Our data revealed that plant defensins are structurally similar to their insect counterparts despite the low amino acid sequence similarity between these two organisms. The molecular and structural relationship among plant defensins and defensins from other species is discussed.
PLOS ONE | 2013
José Carlos Jiménez-López; María Isabel Rodríguez-García; Juan de Dios Alché
An extensive polymorphism analysis of pollen profilin, a fundamental regulator of the actin cytoskeleton dynamics, has been performed with a major focus in 3D-folding maintenance, changes in the 2-D structural elements, surface residues involved in ligands-profilin interactions and functionality, and the generation of conformational and lineal B- and T-cell epitopes variability. Our results revealed that while the general fold is conserved among profilins, substantial structural differences were found, particularly affecting the special distribution and length of different 2-D structural elements (i.e. cysteine residues), characteristic loops and coils, and numerous micro-heterogeneities present in fundamental residues directly involved in the interacting motifs, and to some extension these residues nearby to the ligand-interacting areas. Differential changes as result of polymorphism might contribute to generate functional variability among the plethora of profilin isoforms present in the olive pollen from different genetic background (olive cultivars), and between plant species, since biochemical interacting properties and binding affinities to natural ligands may be affected, particularly the interactions with different actin isoforms and phosphoinositides lipids species. Furthermore, conspicuous variability in lineal and conformational epitopes was found between profilins belonging to the same olive cultivar, and among different cultivars as direct implication of sequences polymorphism. The variability of the residues taking part of IgE-binding epitopes might be the final responsible of the differences in cross-reactivity among olive pollen cultivars, among pollen and plant-derived food allergens, as well as between distantly related pollen species, leading to a variable range of allergy reactions among atopic patients. Identification and analysis of commonly shared and specific epitopes in profilin isoforms is essential to gain knowledge about the interacting surface of these epitopes, and for a better understanding of immune responses, helping design and development of rational and effective immunotherapy strategies for the treatment of allergy diseases.
Journal of Microscopy | 2008
Sonia Morales; José Carlos Jiménez-López; Antonio Jesús Castro; María Isabel Rodríguez-García; Juan de Dios Alché
Pollen allergens offer a dual perspective of study: some of them are considered key proteins for pollen physiology, but they are also able to trigger allergy symptoms in susceptible humans after coming in contact with their tissues. Profilin (Ole e 2 allergen) has been characterized, to some extent, as one of the major allergens from Olea europaea L. pollen, a highly allergenic species in the Mediterranean countries. In order to obtain clues regarding the biological role of this protein, we have analyzed both its cellular localization and the organization of actin throughout pollen hydration and early pollen tube germination. The localization of the cited proteins was visualized by confocal laser scanning microscopy immunofluorescence using different antibodies. Upon pollen hydration and pollen germination, a massive presence of profilin was detected close to the site of pollen tube emergence, forming a ring‐like structure around the ‘effective’ apertural region. Profilin was also detected in the pollen exine of the germinating pollen grains and in the germination medium. After using a permeabilization‐enhanced protocol for immunolocalization, profilin was also localized in the cytoplasm of the pollen tube, particularly at both the proximal and apical ends. Noticeable accumulations of actin were observed in the cytoplasm of the pollen tube; particularly, in both the apical region and the area immediately close to the aperture. Actin filaments were not observed, probably due to the need of further enhanced fixation procedures. The ultrastructural localization of profilin showed the presence of the protein in the cytoplasm of both the mature pollen grain and the pollen tube.
BMC Plant Biology | 2013
Emma W. Gachomo; José Carlos Jiménez-López; Sarah Smith; Anthony B Cooksey; Oteri M Oghoghomeh; Nicholas P. Johnson; Lamine Baba-Moussa; Simeon O. Kotchoni
BackgroundANGUSTIFOLIA (AN), one of the CtBP family proteins, plays a major role in microtubule-dependent cell morphogenesis. Microarray analysis of mammalian AN homologs suggests that AN might function as a transcriptional activator and regulator of a wide range of genes. Genetic characterization of AN mutants suggests that AN might be involved in multiple biological processes beyond cell morphology regulation.ResultsUsing a reverse genetic approach, we provide in this paper the genetic, biochemical, and physiological evidence for ANGUSTIFOLIA’s role in other new biological functions such as abiotic and biotic stress response in higher plants. The T-DNA knockout an-t1 mutant exhibits not only all the phenotypes of previously described angustifolia null mutants, but also copes better than wild type under dehydration and pathogen attack. The stress tolerance is accompanied by a steady-state modulation of cellular H2O2 content, malondialdehyde (MDA) derived from cellular lipid peroxidation, and over-expression of stress responsive genes. Our results indicate that ANGUSTIFOLIA functions beyond cell morphology control through direct or indirect functional protein interaction networks mediating other biological processes such as drought and pathogen attacks.ConclusionsOur results indicate that the ANGUSTIFOLIA gene participates in several biochemical pathways controlling cell morphogenesis, abiotic, and biotic stress responses in higher plants. Our results suggest that the in vivo function of plant ANGUSTIFOLIA has been overlooked and it needs to be further studied beyond microtubule-dependent cell morphogenesis.
PLOS ONE | 2010
Simeon O. Kotchoni; José Carlos Jiménez-López; Emma W. Gachomo; Manfredo J. Seufferheld
The male fertility restorer (RF) proteins belong to extended protein families associated with the cytoplasmic male sterility in higher plants. Up till now, there is no devised nomenclature for naming the RF proteins. The systematic sequencing of new plant species in recent years has uncovered the existence of several novel RF genes and their encoded proteins. Their naming has been simply arbitrary and could not be adequately handled in the context of comparative functional genomics. We propose in this study a unified nomenclature for the RF extended protein families across all plant species. This new and unified nomenclature relies upon previously developed nomenclature for the first ever characterized RF gene, RF2A/ALDH2B2, a member of ALDH gene superfamily, and adheres to the guidelines issued by the ALDH Genome Nomenclature Committees. The proposed nomenclature reveals that RF gene superfamily encodes currently members of 51 families. This unified nomenclature accommodates functional RF genes and pseudogenes, and offers the flexibility needed to incorporate additional RFs as they become available in future. In addition, we provide a phylogenetic relationship between the RF extended families and use computational protein modeling to demonstrate the high divergence of RF functional specializations through specific structural features of selected members of RF superfamily.