José Carlos Miranda
Oswaldo Cruz Foundation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Carlos Miranda.
Proceedings of the National Academy of Sciences of the United States of America | 2008
Regis Gomes; Clarissa Teixeira; Maria Jânia Teixeira; Fabiano Oliveira; Maria José Menezes; Claire Silva; Camila I. de Oliveira; José Carlos Miranda; Dia-Eldin Elnaiem; Shaden Kamhawi; Jesus G. Valenzuela; Cláudia Brodskyn
Visceral leishmaniasis (VL) is a fatal disease for humans, and no vaccine is currently available. Sand fly salivary proteins have been associated with protection against cutaneous leishmaniasis. To test whether vector salivary proteins can protect against VL, a hamster model was developed involving intradermal inoculation in the ears of 100,000 Leishmania infantum chagasi parasites together with Lutzomyia longipalpis saliva to mimic natural transmission by sand flies. Hamsters developed classical signs of VL rapidly, culminating in a fatal outcome 5–6 months postinfection. Saliva had no effect on the course of infection in this model. Immunization with 16 DNA plasmids coding for salivary proteins of Lu. longipalpis resulted in the identification of LJM19, a novel 11-kDa protein, that protected hamsters against the fatal outcome of VL. LJM19-immunized hamsters maintained a low parasite load that correlated with an overall high IFN-γ/TGF-β ratio and inducible NOS expression in the spleen and liver up to 5 months postinfection. Importantly, a delayed-type hypersensitivity response with high expression of IFN-γ was also noted in the skin of LJM19-immunized hamsters 48 h after exposure to uninfected sand fly bites. Induction of IFN-γ at the site of bite could partly explain the protection observed in the viscera of LJM19-immunized hamsters through direct parasite killing and/or priming of anti-Leishmania immunity. We have shown that immunity to a defined salivary protein (LJM19) confers powerful protection against the fatal outcome of a parasitic disease, which reinforces the concept of using components of arthropod saliva in vaccine strategies against vector-borne diseases.
The Journal of Infectious Diseases | 2002
Regis Gomes; Cláudia Brodskyn; Camila I. de Oliveira; Jackson Maurício Lopes Costa; José Carlos Miranda; Arlene de Jesus Mendes Caldas; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral
Antibody responses to salivary gland sonicate (SGS) from Lutzomyia longipalpis were investigated using serum samples from individuals living in an area where visceral leishmaniasis is endemic. Individuals were classified into 2 groups, according to the alteration of their responses to Leishmania chagasi antigen over the course of 6 months. Group 1 included children who experienced anti-L. chagasi seroconversion from negative to positive; group 2 included children who experienced delayed-type hypersensitivity (DTH) response to L. chagasi antigen conversion from negative to positive. Individuals who experienced seroconversion against L. chagasi antigens did not have increased anti-saliva antibody response, whereas those who developed a positive anti-L. chagasi DTH response had increased immunoglobulin (Ig) G, IgG1 and IgE anti-SGS antibody levels. Despite wide variation, serum samples from individuals in group 2 recognized more bands in SGS than did those from individuals in group 1. This simultaneous appearance of anti-saliva humoral response and anti-L. chagasi cell-mediated immunity supports the hypothesis that induction of immune response against SGS can facilitate induction of a protective response against leishmaniasis.
PLOS Neglected Tropical Diseases | 2007
Tatiana R. de Moura; Fabiano Oliveira; Fernanda O. Novais; José Carlos Miranda; Jorge Clarêncio; Ivonise Follador; Edgar M. Carvalho; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral; Cláudia Brodskyn; Camila I. de Oliveira
Background Sand fly saliva has an array of pharmacological and immunomodulatory components, and immunity to saliva protects against Leishmania infection. In the present study, we have studied the immune response against Lutzomyia intermedia saliva, the main vector of Leishmania braziliensis in Brazil, and the effects of saliva pre-exposure on L. braziliensis infection employing an intradermal experimental model. Methodology/principal findings BALB/c mice immunized with L. intermedia salivary gland sonicate (SGS) developed a saliva-specific antibody response and a cellular immune response with presence of both IFN-γ and IL-4. The inflammatory infiltrate observed in SGS-immunized mice was comprised of numerous polymorphonuclear and few mononuclear cells. Mice challenged with live L. braziliensis in the presence of saliva were not protected although lesion development was delayed. The inoculation site and draining lymph node showed continuous parasite replication and low IFN-γ to IL-4 ratio, indicating that pre-exposure to L. intermedia saliva leads to modulation of the immune response. Furthermore, in an endemic area of cutaneous leishmaniasis, patients with active lesions displayed higher levels of anti-L. intermedia saliva antibodies when compared to individuals with a positive skin test result for Leishmania. Conclusion These results show that pre-exposure to sand fly saliva plays an important role in the outcome of cutaneous leishmaniasis, in both mice and humans. They emphasize possible hurdles in the development of vaccines based on sand fly saliva and the need to identify and select the individual salivary candidates instead of using whole salivary mixture that may favor a non-protective response.
Memorias Do Instituto Oswaldo Cruz | 2002
José Carlos Miranda; Eliana A. G. Reis; Albert Schriefer; Marilda de Souza Gonçalves; Mitermayer G. Reis; Lucas P. Carvalho; Octavio Fernandes; Manoel Barral-Netto; Aldina Barral
Leishmania infected of Lutzomyia spp. are rare in endemic areas. We tested the hypothesis that there is clustering of infected vectors by combining pinpoint capture with sensitive L. braziliensis kDNA minicircle specific PCR/dot blot in an endemic area in the State of Bahia. Thirty out of 335 samples (10 to 20 sand flies/sample; total of 4,027 female sand flies) were positive by PCR analysis and dot blot leading to a underestimated overall rate of 0.4% positive phlebotomines. However, 83.3% of the positive samples were contributed by a single sector out of four sectors of the whole studied area. This resulted in a rate of 1.5% Leishmania positive phlebotomines for this sector, far above rates of other sectors. Incidence of American cutaneous leishmaniasis cases for this sector was about twice that for other sectors. Our results show that there is a non-homogeneous distribution of Leishmania-infected vectors. Such a clustering may have implications in control strategies against leishmaniasis, and reinforces the necessity of understanding the ecological and geographical factors involved in leishmanial transmission.
European Journal of Immunology | 2007
Vera Silvia de Freitas Vinhas; Bruno B. Andrade; Fábio Paes; Andréa Bomura; Jorge Clarêncio; José Carlos Miranda; André Báfica; Aldina Barral; Manoel Barral-Netto
Experiments in animals verified that phlebotomine saliva enhances Leishmania infection, and vaccination with saliva prevents disease. We have shown that individuals from an endemic area of visceral leishmaniasis displayed robust antibody responses to saliva from the vector Lutzomyia longipalpis, which correlated with anti‐parasite cell‐mediated immunity. Here, we explored human anti‐saliva responses following exposure to sand flies, using an in vivo bite model in which normal volunteers were exposed four times to 30 laboratory‐reared Lu. longipalpis. Following the third exposure, normal volunteers developed diverse dermatological reactions at the site of insect bite. Serum from normal volunteers displayed high levels of anti‐salivary gland sonicate IgG1, IgG4 and IgE as well as several salivary gland proteins. Furthermore, following in vitro stimulation with salivary gland sonicate, there was an increased frequency of CD4+CD25+ and CD8+CD25+ T cells as well as IFN‐γ and IL‐10 synthesis. Strikingly, 1 year after the first exposure, PBMC from the volunteers displayed recall IFN‐γ responses that correlated with a significant reduction in infection rates using a macrophage‐lymphocyte autologous culture. Together, these data suggest that human immunization against sand fly saliva is feasible and recall responses are obtained even 1 year after exposure, opening perspectives for vaccination in man.
Memorias Do Instituto Oswaldo Cruz | 1984
Ítalo Rodrigues de Araújo Sherlock; José Carlos Miranda; Moysés Sadigursky; Gabriel Grimaldi Junior
An opossum, Didelphis albiventris, from Jacobina, Bahia State, was found naturally infected with Leishmania donovani, being the first non-canid wild mammal to be detected with the agent of kala-azar in the New World.
PLOS Neglected Tropical Diseases | 2010
Ana Paula Souza; Bruno B. Andrade; Dorlene Maria Cardoso de Aquino; Petter F. Entringer; José Carlos Miranda; Ruan Alcantara; Daniel Ruiz; Manuel Soto; Clarissa Teixeira; Jesus G. Valenzuela; Cláudia Brodskyn; Manoel Barral-Netto; Aldina Barral
Background Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure. Methodology/principal findings ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples. Conclusion Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.
Journal of Immunology | 2005
Clarissa Teixeira; Maria Jania Teixeira; Regis Gomes; Claire da Silva Santos; Bruno B. Andrade; Imbroinise Raffaele-Netto; João Santana da Silva; Angelo Guglielmotti; José Carlos Miranda; Aldina Barral; Cláudia Brodskyn; Manoel Barral-Netto
Saliva of bloodfeeding arthropods has been incriminated in facilitating the establishment of parasite in their host. We report on the leukocyte chemoattractive effect of salivary gland homogenate (SGH) from Lutzomyia longipalpis on saliva-induced inflammation in an air pouch model. SGH (0.5 pair/animal) was inoculated in the air pouch formed in the back of BALB/c or C57BL/6 mice. L. longipalpis SGH induced a significant influx of macrophages in BALB/c but not in C57BL/6 mice. SGH-induced cell recruitment reached a peak at 12 h after inoculation and was higher than that induced by the LPS control. This differential cell recruitment in BALB/c mice was directly correlated to an increase in CCL2/MCP-1 expression in the air pouch lining tissue. In fact, treatment with bindarit, an inhibitor of CCL2/MCP-1 synthesis, and also with a specific anti-MCP-1 mAb resulted in drastic reduction of macrophage recruitment and inhibition of CCL2/MCP-1 expression in the lining tissue. CCL2/MCP-1 production was also seen in vitro when J774 murine macrophages were exposed to L. longipalpis SGH. The SGH effect was abrogated by preincubation with serum containing anti-SGH IgG Abs as well as in mice previously sensitized with L. longipalpis bites. Interestingly, the combination of SGH with Leishmania chagasi induced an increased recruitment of neutrophils and macrophages when compared with L. chagasi alone. Taken together these results suggest that SGH not only induces the recruitment of a greater number of macrophages by enhancing CCL2/MCP-1 production but also synergizes with L. chagasi to recruit more inflammatory cells to the site of inoculation.
PLOS Neglected Tropical Diseases | 2011
Natalia Tavares; Robson Amaro Augusto da Silva; Dirceu Costa; Maiana Pitombo; Kiyoshi F. Fukutani; José Carlos Miranda; Jesus G. Valenzuela; Aldina Barral; Camila I. de Oliveira; Manoel Barral-Netto; Cláudia Brodskyn
Background Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis. Methodology/Principal Findings Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression. Conclusions/Significance Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.
Infection and Immunity | 2004
Dirceu Costa; Cecilia B. F. Favali; Jorge Clarêncio; Lilian Afonso; Viviane Conceição; José Carlos Miranda; Richard G. Titus; Jesus G. Valenzuela; Manoel Barral-Netto; Aldina Barral; Cláudia Brodskyn
ABSTRACT In this report, we describe an investigation of the effects of Lutzomyia longipalpis sand fly salivary gland homogenates (SGH) on cytokine production and expression of costimulatory molecules on human monocytes, macrophages (Mφs), and dendritic cells (DCs). SGH of L. longipalpis induced an increase in interleukin-6 (IL-6), IL-8 and IL-12p40 production but a decrease in tumor necrosis factor alpha and IL-10 production by lipopolysaccharida (LPS)-stimulated monocytes. We also examined the expression of costimulatory molecules on the surface of monocytes, Mφs, and DCs. Whereas SGH affected the expression of these molecules on monocytes and Mφs, it had little effect on these molecules on DCs. However, when DCs were generated from human monocytes in the presence of SGH, SGH inhibited the expression of costimulatory molecules. In addition, a decrease in the maturation of DCs induced by CD40L was observed in the presence of SGH. Finally, preincubating SGH with human sera containing anti-SGH-specific antibodies abolished the effects of SGH on cytokine production by LPS-stimulated monocytes.