Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Cesar Rosa Neto is active.

Publication


Featured researches published by José Cesar Rosa Neto.


Applied Physiology, Nutrition, and Metabolism | 2014

Exercise training as treatment in cancer cachexia.

Fábio Santos Lira; José Cesar Rosa Neto; Marília Seelaender

Cachexia is a wasting syndrome that may accompany a plethora of diseases, including cancer, chronic obstructive pulmonary disease, aids, and rheumatoid arthritis. It is associated with central and systemic increases of pro-inflammatory factors, and with decreased quality of life, response to pharmacological treatment, and survival. At the moment, there is no single therapy able to reverse cachexia many symptoms, which include disruption of intermediary metabolism, endocrine dysfunction, compromised hypothalamic appetite control, and impaired immune function, among other. Growing evidence, nevertheless, shows that chronic exercise, employed as a tool to counteract systemic inflammation, may represent a low-cost, safe alternative for the prevention/attenuation of cancer cachexia. Despite the well-documented capacity of chronic exercise to counteract sustained disease-related inflammation, few studies address the effect of exercise training in cancer cachexia. The aim of the present review was hence to discuss the results of cachexia treatment with endurance training. As opposed to resistance exercise, endurance exercise may be performed devoid of equipment, is well tolerated by patients, and an anti-inflammatory effect may be observed even at low-intensity. The decrease in inflammatory status induced by endurance protocols is paralleled by recovery of various metabolic pathways. The mechanisms underlying the response to the treatment are considered.


BioMed Research International | 2012

Sunflower Oil Supplementation Has Proinflammatory Effects and Does Not Reverse Insulin Resistance in Obesity Induced by High-Fat Diet in C57BL/6 Mice

Laureane Nunes Masi; Amanda R. Martins; José Cesar Rosa Neto; Cátia Lira do Amaral; Amanda R. Crisma; Marco Aurélio Ramirez Vinolo; Edson Alves de Lima Júnior; Sandro M. Hirabara; Rui Curi

High consumption of polyunsaturated fatty acids, such as sunflower oil has been associated to beneficial effects in plasma lipid profile, but its role on inflammation and insulin resistance is not fully elucidated yet. We evaluated the effect of sunflower oil supplementation on inflammatory state and insulin resistance condition in HFD-induced obese mice. C57BL/6 male mice (8 weeks) were divided in four groups: (a) control diet (CD), (b) HFD, (c) CD supplemented with n-6 (CD + n-6), and (d) HFD supplemented with n-6 (HFD + n-6). CD + n-6 and HFD + n-6 were supplemented with sunflower oil by oral gavage at 2 g/Kg of body weight, three times per week. CD and HFD were supplemented with water instead at the same dose. HFD induced whole and muscle-specific insulin resistance associated with increased inflammatory markers in insulin-sensitive tissues and macrophage cells. Sunflower oil supplementation was not efficient in preventing or reducing these parameters. In addition, the supplementation increased pro-inflammatory cytokine production by macrophages and tissues. Lipid profile, on the other hand, was improved with the sunflower oil supplementation in animals fed HFD. In conclusion, sunflower oil supplementation improves lipid profile, but it does not prevent or attenuate insulin resistance and inflammation induced by HFD in C57BL/6 mice.


Journal of Cachexia, Sarcopenia and Muscle | 2016

Doxorubicin caused severe hyperglycaemia and insulin resistance, mediated by inhibition in AMPk signalling in skeletal muscle

Edson Alves de Lima Júnior; Alex Shimura Yamashita; Gustavo Duarte Pimentel; Luís G. O. De Sousa; Ronaldo Vagner Thomatieli dos Santos; Cinara L. Gonçalves; Emilio L. Streck; Fábio Santos Lira; José Cesar Rosa Neto

Cancer is considered the second leading cause of death in the world, and for the treatment of this disease, pharmacological intervention strategies are frequently based on chemotherapy. Doxorubicin (DOX) is one of the most widely used chemotherapeutic agents in clinical practice for treating a number of solid tumours. The treatment with DOX mimics some effects of cancer cachexia, such as anorexia, asthenia, decreases in fat and skeletal muscle mass and fatigue. We observed that treatment with DOX increased the systemic insulin resistance and caused a massive increase in glucose levels in serum. Skeletal muscle is a major tissue responsible for glucose uptake, and the positive role of AMPk protein (AMP‐activated protein kinase) in GLUT‐4 (Glucose Transporter type 4) translocation, is well established. With this, our aim was to assess the insulin sensitivity after treatment with DOX and involvement of AMPk signalling in skeletal muscle in this process.


Immunobiology | 2017

mTORC1 inhibition with rapamycin exacerbates adipose tissue inflammation in obese mice and dissociates macrophage phenotype from function.

Vivian A. Paschoal; Mariane T. Amano; Thiago Belchior; Juliana Magdalon; Patricia Chimin; Maynara L. Andrade; Milene Ortiz-Silva; Érique Castro; Alex Shimura Yamashita; José Cesar Rosa Neto; Niels Olsen Saraiva Câmara; William T. Festuccia

Genetic- and diet-induced obesity and insulin resistance are associated with an increase in mechanistic target of rapamycin complex (mTORC) 1 activity in adipose tissue. We investigated herein the effects of pharmacological mTORC1 inhibition in the development of adipose tissue inflammation induced by high-fat diet (HFD) feeding, as well as in the polarization, metabolism and function of bone marrow-derived macrophages (BMDM). For this, C57BL/6J mice fed with a standard chow diet or a HFD (60% of calories from fat) and treated with either vehicle (0.1% Me2SO, 0.2% methylcellulose) or rapamycin (2mg/kg/ day, gavage) during 30days were evaluated for body weight, adiposity, glucose tolerance and adipose tissue inflammation. Although rapamycin did not affect the increase in body weight and adiposity, it exacerbated the glucose intolerance and adipose tissue inflammation induced by HFD feeding, as evidenced by the increased adipose tissue percentage of M1 macrophages, naive and activated cytotoxic T lymphocytes, and mRNA levels of proinflammatory molecules, such as TNF-α, IL-6 and MCP-1. In BMDM in vitro, pharmacological mTORC1 inhibition induced phosphorylation of NFκB p65 and spontaneous polarization of macrophages to a proinflammatory M1 profile, while it impaired M2 polarization induced by IL-4+IL-13, glycolysis and phagocytosis. Altogether, these findings indicate that mTORC1 activity is an important determinant of adipose tissue inflammatory profile and macrophage plasticity, metabolism and function.


Journal of Cellular Physiology | 2017

Palmitoleic Acid Improves Metabolic Functions in Fatty Liver by PPARα-Dependent AMPK Activation.

Camila Oliveira de Souza; Alexandre A. S. Teixeira; Luana A. Biondo; Edson Amaro Junior; Helena Batatinha; José Cesar Rosa Neto

Background: Palmitoleic acid, since described as lipokine, increases glucose uptake by modulation of 5′AMP‐activated protein kinase (AMPK), as well as increasing lipolysis by activation of peroxisome proliferator‐activated receptor‐α (PPARα), in adipose tissue. However, in liver, the effects of palmitoleic acid on glucose metabolism and the role of PPARα remain unknown. Objective: To investigate whether palmitoleic acid improved the hepatic insulin sensitivity of obese mice. Methods: C57BL6 and PPARα knockout (KO) mice were fed for 12 weeks with a standard diet (SD) or high‐fat diet (HF), and in the last 2 weeks were treated with oleic or palmitoleic acid. Results: Palmitoleic acid promoted a faster uptake of glucose in the body, associated with higher insulin concentration; however, even when stimulated with insulin, palmitoleic acid did not modulate the insulin pathway (AKT, IRS). Palmitoleic acid increased the phosphorylation of AMPK, upregulated glucokinase and downregulated SREBP‐1. Regarding AMPK downstream, palmitoleic acid increased the production of FGF‐21 and stimulated the expression of PPARα. Palmitoleic acid treatment did not increase AMPK phosphorylation, modulate glucokinase or increase FGF‐21 in liver of PPARα KO mice. Conclusions: In mice fed with a high‐fat diet, palmitoleic acid supplementation stimulated the uptake of glucose in liver through activation of AMPK and FGF‐21, dependent on PPARα. J. Cell. Physiol. 232: 2168–2177, 2017.


PLOS ONE | 2016

Impact of Doxorubicin Treatment on the Physiological Functions of White Adipose Tissue

Luana A. Biondo; Edson Alves de Lima Júnior; Camila Oliveira de Souza; Maysa Mariana Cruz; Roberta Da Cunha; Maria Isabel C. Alonso-Vale; Lila Missae Oyama; Claudia Maria Oller do Nascimento; Gustavo Duarte Pimentel; Ronaldo Vagner Thomatieli dos Santos; Fábio Santos Lira; José Cesar Rosa Neto

White adipose tissue (WAT) plays a fundamental role in maintaining energy balance and important endocrine functions. The loss of WAT modifies adipokine secretion and disrupts homeostasis, potentially leading to severe metabolic effects and a reduced quality of life. Doxorubicin is a chemotherapeutic agent used clinically because of its good effectiveness against various types of cancer. However, doxorubicin has deleterious effects in many healthy tissues, including WAT, liver, and skeletal and cardiac muscles. Our objective was to investigate the effects of doxorubicin on white adipocytes through in vivo and in vitro experiments. Doxorubicin reduced the uptake of glucose by retroperitoneal adipocytes and 3T3-L1 cells via the inhibition of AMP-activated protein kinase Thr172 phosphorylation and glucose transporter 4 content. Doxorubicin also reduced the serum level of adiponectin and, to a greater extent, the expression of genes encoding lipogenic (Fas and Acc) and adipogenic factors (Pparg, C/ebpa, and Srebp1c) in retroperitoneal adipose tissue. In addition, doxorubicin inhibited both lipogenesis and lipolysis and reduced the hormone-sensitive lipase and adipose tissue triacylglycerol lipase protein levels. Therefore, our results demonstrate the impact of doxorubicin on WAT. These results are important to understand some side effects observed in patients receiving chemotherapy and should encourage new adjuvant treatments that aim to inhibit these side effects.


Molecular Nutrition & Food Research | 2018

Is Palmitoleic Acid a Plausible Nonpharmacological Strategy to Prevent or Control Chronic Metabolic and Inflammatory Disorders

Camila Oliveira de Souza; Gretchen K. Vannice; José Cesar Rosa Neto; Philip C. Calder

Although dietary fatty acids can modulate metabolic and immune responses, the effects of palmitoleic acid (16:1n-7) remain unclear. Since this monounsaturated fatty acid is described as a lipokine, studies with cell culture and rodent models have suggested it enhances whole body insulin sensitivity, stimulates insulin secretion by β cells, increases hepatic fatty acid oxidation, improves the blood lipid profile, and alters macrophage differentiation. However, human studies report elevated blood levels of palmitoleic acid in people with obesity and metabolic syndrome. These findings might be reflection of the level or activity of stearoyl-CoA desaturase-1, which synthesizes palmitoleate and is enhanced in liver and adipose tissue of obese patients. The aim of this review is to describe the immune-metabolic effects of palmitoleic acid observed in cell culture, animal models, and humans to answer the question of whether palmitoleic acid is a plausible nonpharmacological strategy to prevent, control, or ameliorate chronic metabolic and inflammatory disorders. Despite the beneficial effects observed in cell culture and in animal studies, there are insufficient human intervention studies to fully understand the physiological effects of palmitoleic acid. Therefore, more human-based research is needed to identify whether palmitoleic acid meets the promising therapeutic potential suggested by the preclinical research.


Journal of Cellular Physiology | 2017

Association between aerobic exercise and rosiglitazone avoided the NAFLD and liver inflammation exacerbated in PPAR-α knockout mice.

Helena Batatinha; Edson A. Lima; Alexandre A. S. Teixeira; Camila Oliveira de Souza; Luana A. Biondo; Loreana Sanches Silveira; Fábio Santos Lira; José Cesar Rosa Neto

Nonalcoholic fatty liver disease (NAFLD) is one of the main liver diseases today, and may progress to steatohepatitis, cirrhosis, and hepatocellular carcinoma. Some studies have shown the beneficial effects of aerobic exercise on reversing NAFLD. To verify whether chronic aerobic exercise improves the insulin resistance, liver inflammation, and steatohepatitis caused by a high fat diet (HF) and whether PPARα is involved in these actions. C57BL6 wild type (WT) and PPAR‐α knockout (KO) mice were fed with a standard diet (SD) or HF during 12 weeks; the HF mice were trained on a treadmill during the last 8 weeks. Serum glucose and insulin tolerances, serum levels of aspartate aminotransferase, hepatic content of triacylglycerol, cytokines, gene expression, and protein expression were evaluated in all animals. Chronic exposure to HF diet increased triacylglycerol accumulation in the liver, leading to NAFLD, increased aminotransferase in the serum, increased peripheral insulin resistance, and higher adiposity index. Exercise reduced all these parameters in both animal genotypes. The liver lipid accumulation was not associated with inflammation; trained KO mice, however, presented a huge inflammatory response that was probably caused by a decrease in PPAR‐γ expression. We conclude that exercise improved the damage caused by a HF independently of PPARα, apparently by a peripheral fatty acid oxidation in the skeletal muscle. We also found that the absence of PPARα together with exercise leads to a decrease in PPAR‐γ and a huge inflammatory response. J. Cell. Physiol. 232: 1008–1019, 2017.


Clinical and Experimental Pharmacology and Physiology | 2017

Palmitoleic acid reduces the inflammation in LPS-stimulated macrophages by inhibition of NFκB, independently of PPARs

Camila Oliveira de Souza; Alexandre A. S. Teixeira; Luana A. Biondo; Loreana Sanches Silveira; Philip C. Calder; José Cesar Rosa Neto

Palmitoleic acid (PM, 16:1n‐7) has anti‐inflammatory properties that could be linked to higher expression of PPARα, an inhibitor of NFκB. Macrophages play a major role in the pathogenesis of chronic inflammation, however, the effects of PM on macrophages are underexplored. Thus, we aimed to investigate the effects of PM in activated macrophages as well the role of PPARα. Primary macrophages were isolated from C57BL/6 wild type (WT) and PPARα knockout (KO) mice, cultured under standard conditions and exposed to lipopolysaccharides LPS (2.5 μg/ml) and PM 600 μmol/L conjugated with albumin for 24 hours. The stimulation with LPS increased the production of interleukin (IL)‐6 and IL‐1β while PM decreased the production of IL‐6 in WT macrophages. In KO macrophages, LPS increased the production of tumour necrosis factor (TNF)‐α and IL‐6 and PM decreased the production of TNFα. The expression of inflammatory markers such NFκB and IL1β were increased by LPS and decreased by PM in both WT and KO macrophages. PM reduced the expression of MyD88 and caspase‐1 in KO macrophages, and the expression of TLR4 and HIF‐1α in both WT and KO macrophages, although LPS had no effect. CD86, an inflammatory macrophage marker, was reduced by PM independently of genotype. PM increased PPARγ and reduced PPARβ gene expression in macrophages of both genotypes, and increased ACOX‐1 expression in KO macrophages. In conclusion, PM promotes anti‐inflammatory effects in macrophages exposed to LPS through inhibition of inflammasome pathway, which was independent of PPARα, PPARϒ and AMPK, thus the molecular mechanisms of anti‐inflammatory response caused by PM is still unclear.


Critical Reviews in Eukaryotic Gene Expression | 2016

Aerobic Exercise Modulates the Free Fatty Acids and Inflammatory Response During Obesity and Cancer Cachexia

Alexandre A. S. Teixeira; Fábio Santos Lira; Gustavo Duarte Pimentel; Camila Oliveira de Souza; Helena Batatinha; Luana A. Biondo; Alex Shimura Yamashita; Edson Amaro Junior; José Cesar Rosa Neto

White adipose tissue (WAT) is no longer considered a tissue whose main function is the storage of TAG. Since the discovery of leptin in 1994, several studies have elucidated the important role of WAT as an endocrine organ, the source of the adipokines. The low-grade inflammation observed in obese and cancer cachexia patients is explained, at least partially, by the exacerbated release of proinflammatory adipokines. Despite of the recent progress in the characterization of the various adipokines and lipokines produced by WAT, little is known about the mechanisms regulating the secretion of these molecules in different physiological and pathological circumstances. Chronic exercise is a nonpharmacological therapy employed in several chronic diseases and shows an anti-inflammatory effect through the regulation of the cytokine network. In this review, we address the potential mechanisms by which the aerobic physical exercise modulate the production and release of inflammatory adipokines, as well as the inflammation-lipolysis axis in WAT, with special focus in the therapeutic role of exercise in obesity-associated insulin resistance and cancer cachexia.

Collaboration


Dive into the José Cesar Rosa Neto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edson A. Lima

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rui Curi

University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge