Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Creissac Campos is active.

Publication


Featured researches published by José Creissac Campos.


automated software engineering | 2001

Model Checking Interactor Specifications

José Creissac Campos; Michael D. Harrison

Recent accounts of accidents draw attention to “automation surprises” that arise in safety critical systems. An automation surprise can occur when a system behaves differently from the expectations of the operator. Interface mode changes are one class of such surprises that have significant impact on the safety of a dynamic interactive system. They may take place implicitly as a result of other system action. Formal specifications of interactive systems provide an opportunity to analyse problems that arise in such systems. In this paper we consider the role that an interactor based specification has as a partial model of an interactive system so that mode consequences can be checked early in the design process. We show how interactor specifications can be translated into the SMV model checker input language and how we can use such specifications in conjunction with the model checker to analyse potential for mode confusion in a realistic case. Our final aim is to develop a general purpose methodology for the automated analysis of interactive systems. This verification process can be useful in raising questions that have to be addressed in a broader context of analysis.


DSV-IS | 1997

Formally Verifying Interactive Systems: A Review

José Creissac Campos; Michael D. Harrison

Although some progress has been made in the development of principles to guide the designers of interactive systems, ultimately the only proven method of checking how usable a particular system is must be based on experiment. However, it is also the case that changes that occur at this late stage are very expensive. The need for early design checking increases as software becomes more complex and is designed to serve volume international markets and also as interactions between operators and automation in safety-critical environments becomes more complex. This paper reviews progress in the area of formal verification of interactive systems and proposes a short agenda for further work.


engineering interactive computing system | 2009

Interaction engineering using the IVY tool

José Creissac Campos; Michael D. Harrison

This paper is concerned with support for the process of usability engineering. The aim is to use formal techniques to provide a systematic approach that is more traceable, and because it is systematic, repeatable. As a result of this systematic process some of the more subjective aspects of the analysis can be removed. The technique explores exhaustively those features of a specific design that fail to satisfy a set of properties. It also analyzes those aspects of the design where it is possible to quantify the cost of use. The method is illustrated using the example of a medical device. While many aspects of the approach and its tool support have already been discussed elsewhere, this paper builds on and contrasts an analysis of the same device provided by a third party and in so doing enhances the IVY tool.


automated software engineering | 2012

GZoltar: an eclipse plug-in for testing and debugging

José Creissac Campos; André Riboira; Alexandre Perez

Testing and debugging is the most expensive, error-prone phase in the software development life cycle. Automated testing and diagnosis of software faults can drastically improve the efficiency of this phase, this way improving the overall quality of the software. In this paper we present a toolset for automatic testing and fault localization, dubbed GZoltar, which hosts techniques for (regression) test suite minimization and automatic fault diagnosis (namely, spectrum-based fault localization). The toolset provides the infrastructure to automatically instrument the source code of software programs to produce runtime data. Subsequently the data was analyzed to both minimize the test suite and return a ranked list of diagnosis candidates. The toolset is a plug-and-play plug-in for the Eclipse IDE to ease world-wide adoption.


engineering interactive computing system | 2010

The GUISurfer tool: towards a language independent approach to reverse engineering GUI code

João Carlos Silva; Carlos Eduardo Silva; Rui D. Gonçalo; João Saraiva; José Creissac Campos

Graphical user interfaces (GUIs) are critical components of todays software. Developers are dedicating a larger portion of code to implementing them. Given their increased importance, correctness of GUIs code is becoming essential. This paper describes the latest results in the development of GUISurfer, a tool to reverse engineer the GUI layer of interactive computing systems. The ultimate goal of the tool is to enable analysis of interactive system from source code.


Electronic Notes in Theoretical Computer Science | 2008

Model-based User Interface Testing With Spec Explorer and ConcurTaskTrees

José Luís Silva; José Creissac Campos; Ana Paiva

Analytic usability analysis methods have been proposed as an alternative to user testing in early phases of development due to the cost of the latter approach. By working with models of the systems, analytic models are not capable of identifying implementation related problems that might have an impact on usability. Model-based testing enables the testing of an implemented software artefact against a model of what it should be (the oracle). In the case of model-based user interface testing, the models should be expressed at an adequate level of abstraction, adequately modelling the interaction process. This paper describes an effort to develop tool support enabling the use of task models as oracles for model-based testing of user interfaces.


international conference on software engineering | 2017

Evaluating and improving fault localization

Spencer Pearson; José Creissac Campos; René Just; Gordon Fraser; Michael D. Ernst; Deric Pang; Benjamin Keller

Most fault localization techniques take as input a faulty program, and produce as output a ranked list of suspicious code locations at which the program may be defective. When researchers propose a new fault localization technique, they typically evaluate it on programs with known faults. The technique is scored based on where in its output list the defective code appears. This enables the comparison of multiple fault localization techniques to determine which one is better. Previous research has evaluated fault localization techniques using artificial faults, generated either by mutation tools or manually. In other words, previous research has determined which fault localization techniques are best at finding artificial faults. However, it is not known which fault localization techniques are best at finding real faults. It is not obvious that the answer is the same, given previous work showing that artificial faults have both similarities to and differences from real faults. We performed a replication study to evaluate 10 claims in the literature that compared fault localization techniques (from the spectrum-based and mutation-based families). We used 2995 artificial faults in 6 real-world programs. Our results support 7 of the previous claims as statistically significant, but only 3 as having non-negligible effect sizes. Then, we evaluated the same 10 claims, using 310 real faults from the 6 programs. Every previous result was refuted or was statistically and practically insignificant. Our experiments show that artificial faults are not useful for predicting which fault localization techniques perform best on real faults. In light of these results, we identified a design space that includes many previously-studied fault localization techniques as well as hundreds of new techniques. We experimentally determined which factors in the design space are most important, using an overall set of 395 real faults. Then, we extended this design space with new techniques. Several of our novel techniques outperform all existing techniques, notably in terms of ranking defective code in the top-5 or top-10 reports.


Formal Aspects of Computing | 2000

Representational reasoning and verification

Gavin J. Doherty; José Creissac Campos; Michael D. Harrison

Abstract. Formal approaches to the design of interactive systems rely on reasoning about properties of the system at a very high level of abstraction. Specifications to support such an approach typically provide little scope for reasoning about presentations and the representation of information in the presentation. In contrast, psychological theories such as distributed cognition place a strong emphasis on the role of representations, and their perception by the user, in the cognitive process. However, the post-hoc techniques for the observation and analysis of existing systems which have developed out of the theory do not help us in addressing such issues at the design stage. Mn this paper we show how a formalisation can be used to investigate the representational aspects of an interface. Our goal is to provide a framework to help identify and resolve potential problems with the representation of information, and to support understanding of representational issues in design. We present a model for linking properties at the abstract and perceptual levels, and illustrate its use in a case study of a ight deck instrument. There is a widespread consensus that proper tool support is a prerequisite for the adoption of formal techniques, but the use of such tools can have a profound effect on the process itself. In order to explore this issue, we apply a higher-order logic theorem prover to the analysis.


automated software engineering | 2013

Entropy-based test generation for improved fault localization

José Creissac Campos; Gordon Fraser; Marcelo d'Amorim

Spectrum-based Bayesian reasoning can effectively rank candidate fault locations based on passing/failing test cases, but the diagnostic quality highly depends on the size and diversity of the underlying test suite. As test suites in practice often do not exhibit the necessary properties, we present a technique to extend existing test suites with new test cases that optimize the diagnostic quality. We apply probability theory concepts to guide test case generation using entropy, such that the amount of uncertainty in the diagnostic ranking is minimized. Our ENTBUG prototype extends the search-based test generation tool EVOSUITE to use entropy in the fitness function of its underlying genetic algorithm, and we applied it to seven real faults. Empirical results show that our approach reduces the entropy of the diagnostic ranking by 49% on average (compared to using the original test suite), leading to a 91% average reduction of diagnosis candidates needed to inspect to find the true faulty one.


Innovations in Systems and Software Engineering | 2015

Reusing models and properties in the analysis of similar interactive devices

Michael D. Harrison; José Creissac Campos; Paolo Masci

The paper is concerned with the comparative analysis of interactive devices. It compares two devices by checking systematically a set of template properties that are designed to explore important interface characteristics. The two devices are designed to support similar tasks in a clinical setting. The devices differ as a result of judgements based on a range of considerations including software. Variations between designs are often relatively subtle and do not always become evident through even relatively thorough user testing. Notwithstanding their subtlety, these differences may be important to the safety or usability of the device. The illustrated approach uses formal techniques to provide the analysis. This means that similar analysis can be applied systematically.

Collaboration


Dive into the José Creissac Campos's collaboration.

Top Co-Authors

Avatar

Paolo Masci

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul Curzon

Queen Mary University of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge