José E. Pérez-Ortín
University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José E. Pérez-Ortín.
Cell | 2004
Susana Rodríguez-Navarro; Tamás Fischer; Ming-Juan Luo; Oreto Antúnez; Susanne Brettschneider; Johannes Lechner; José E. Pérez-Ortín; Robin Reed; Ed Hurt
Gene expression is a coordinated multistep process that begins with transcription and RNA processing in the nucleus followed by mRNA export to the cytoplasm for translation. Here we report the identification of a protein, Sus1, which functions in both transcription and mRNA export. Sus1 is a nuclear protein with a concentration at the nuclear pores. Biochemical analyses show that Sus1 interacts with SAGA, a large intranuclear histone acetylase complex involved in transcription initiation, and with the Sac3-Thp1 complex, which functions in mRNA export with specific nuclear pore proteins at the nuclear basket. DNA macroarray analysis revealed that Sus1 is required for transcription regulation. Moreover, chromatin immunoprecipitation showed that Sus1 is associated with the promoter of a SAGA-dependent gene during transcription activation. Finally, mRNA export is impaired in sus1 mutants. These data provide an unexpected connection between the SAGA histone acetylase complex and the mRNA export machinery.
Nucleic Acids Research | 2004
Ulrich Güldener; Martin Münsterkötter; Gabi Kastenmüller; N. Strack; J. Van Helden; Christian Lemer; J. Richelles; José García-Martínez; José E. Pérez-Ortín; H. Michael; Andreas Kaps; Emmanuel Talla; Bernard Dujon; Bernard André; Jean-Luc Souciet; J. De Montigny; Elisabeth Bon; Claude Gaillardin; Hans-Werner Mewes
The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular networks include metabolic and regulatory pathways, signal transduction and transport processes as well as co-regulated gene clusters. As more yeast genomes are published, their annotation becomes greatly facilitated using S.cerevisiae as a reference. CYGD provides a way of exploring related genomes with the aid of the S.cerevisiae genome as a backbone and SIMAP, the Similarity Matrix of Proteins. The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.
Frontiers in Genetics | 2014
Daniel A. Medina; Antonio Jordán-Pla; Gonzalo Millán-Zambrano; Sebastián Chávez; Mordechai Choder; José E. Pérez-Ortín
The 5′ to 3′ exoribonuclease Xrn1 is a large protein involved in cytoplasmatic mRNA degradation as a critical component of the major decaysome. Its deletion in the yeast Saccharomyces cerevisiae is not lethal, but it has multiple physiological effects. In a previous study, our group showed that deletion of all tested components of the yeast major decaysome, including XRN1, results in a decrease in the synthetic rate and an increase in half-life of most mRNAs in a compensatory manner. Furthermore, the same study showed that the all tested decaysome components are also nuclear proteins that bind to the 5′ region of a number of genes. In the present work, we show that disruption of Xrn1 activity preferentially affects both the synthesis and decay of a distinct subpopulation of mRNAs. The most affected mRNAs are the transcripts of the highly transcribed genes, mainly those encoding ribosome biogenesis and translation factors. Previously, we proposed that synthegradases play a key role in regulating both mRNA synthesis and degradation. Evidently, Xrn1 functions as a synthegradase, whose selectivity might help coordinating the expression of the protein synthetic machinery. We propose to name the most affected genes “Xrn1 synthegradon.”
RNA | 2009
Lorena Romero-Santacreu; Joaquín Moreno; José E. Pérez-Ortín; Paula Alepuz
Hyperosmotic stress yields reprogramming of gene expression in Saccharomyces cerevisiae cells. Most of this response is orchestrated by Hog1, a stress-activated, mitogen-activated protein kinase (MAPK) homologous to human p38. We investigated, on a genomic scale, the contribution of changes in transcription rates and mRNA stabilities to the modulation of mRNA amounts during the response to osmotic stress in wild-type and hog1 mutant cells. Mild osmotic shock induces a broad mRNA destabilization; however, osmo-mRNAs are up-regulated by increasing both transcription rates and mRNA half-lives. In contrast, mild or severe osmotic stress in hog1 mutants, or severe osmotic stress in wild-type cells, yields global mRNA stabilization and sequestration of mRNAs into P-bodies. After adaptation, the absence of Hog1 affects the kinetics of P-bodies disassembly and the return of mRNAs to translation. Our results indicate that regulation of mRNA turnover contributes to coordinate gene expression upon osmotic stress, and that there are both specific and global controls of mRNA stability depending on the strength of the osmotic stress.
Applied and Environmental Microbiology | 2000
Sergi Puig; Amparo Querol; Eladio Barrio; José E. Pérez-Ortín
ABSTRACT Natural strains of Saccharomyces cerevisiae are prototrophic homothallic yeasts that sporulate poorly, are often heterozygous, and may be aneuploid. This genomic constitution may confer selective advantages in some environments. Different mechanisms of recombination, such as meiosis or mitotic rearrangement of chromosomes, have been proposed for wine strains. We studied the stability of the URA3 locus of a URA3/ura3 wine yeast in consecutive grape must fermentations. ura3/ura3homozygotes were detected at a rate of 1 × 10−5 to 3 × 10−5 per generation, and mitotic rearrangements for chromosomes VIII and XII appeared after 30 mitotic divisions. We used the karyotype as a meiotic marker and determined that sporulation was not involved in this process. Thus, we propose a hypothesis for the genome changes in wine yeasts during vinification. This putative mechanism involves mitotic recombination between homologous sequences and does not necessarily imply meiosis.
Yeast | 2000
Sergi Puig; José E. Pérez-Ortín
During wine fermentation yeasts quickly reach a stationary phase, where cells are metabolically active by consuming sugars present in grape must. It is, consequently, of great interest at this stage to identify suitable gene promoters that may be used to induce the expression of genes with enological applications. With this aim, we have studied a group of genes showing an induction peak at the diauxic shift, and possessing stress response elements (STRE) at their promoters. We have determined their induction levels under individualized stress conditions, such as carbon source starvation or high salt concentrations. In all the cases studied, the activation and/or basal transcription are dependent on the transcriptional factors Msn2p and Msn4p. We have analysed the expression patterns and mRNA levels during wine fermentation, and have found that they are all activated at the stationary phase. Finally, we have identified SPI1, a new highly expressed yeast gene which is specifically induced at the stationary phase of both microvinification and laboratory growth conditions. Copyright
Yeast | 2002
Susana Rodríguez-Navarro; Bertrand Llorente; María Teresa Rodríguez-Manzaneque; Anna Ramne; Genoveva Uber; Denis Marchesan; Bernard Dujon; Enrique Herrero; Per Sunnerhagen; José E. Pérez-Ortín
In order to clarify their physiological functions, we have undertaken a characterization of the three‐membered gene families SNZ1–3 and SNO1–3. In media lacking vitamin B6, SNZ1 and SNO1 were both required for growth in certain conditions, but neither SNZ2, SNZ3, SNO2 nor SNO3 were required. Copies 2 and 3 of the gene products have, in spite of their extremely close sequence similarity, slightly different functions in the cell. We have also found that copies 2 and 3 are activated by the lack of thiamine and that the Snz proteins physically interact with the thiamine biosynthesis Thi5 protein family. Whereas copy 1 is required for conditions in which B6 is essential for growth, copies 2 and 3 seem more related with B1 biosynthesis during the exponential phase. Copyright
PLOS ONE | 2010
Vicent Pelechano; Sebastián Chávez; José E. Pérez-Ortín
The amount of mRNA in a cell is the result of two opposite reactions: transcription and mRNA degradation. These reactions are governed by kinetics laws, and the most regulated step for many genes is the transcription rate. The transcription rate, which is assumed to be exercised mainly at the RNA polymerase recruitment level, can be calculated using the RNA polymerase densities determined either by run-on or immunoprecipitation using specific antibodies. The yeast Saccharomyces cerevisiae is the ideal model organism to generate a complete set of nascent transcription rates that will prove useful for many gene regulation studies. By combining genomic data from both the GRO (Genomic Run-on) and the RNA pol ChIP-on-chip methods we generated a new, more accurate nascent transcription rate dataset. By comparing this dataset with the indirect ones obtained from the mRNA stabilities and mRNA amount datasets, we are able to obtain biological information about posttranscriptional regulation processes and a genomic snapshot of the location of the active transcriptional machinery. We have obtained nascent transcription rates for 4,670 yeast genes. The median RNA polymerase II density in the genes is 0.078 molecules/kb, which corresponds to an average of 0.096 molecules/gene. Most genes have transcription rates of between 2 and 30 mRNAs/hour and less than 1% of yeast genes have >1 RNA polymerase molecule/gene. Histone and ribosomal protein genes are the highest transcribed groups of genes and other than these exceptions the transcription of genes is an infrequent phenomenon in a yeast cell.
Journal of Cell Biology | 2008
Stefanie E. Grund; Tamás Fischer; Ghislain G. Cabal; Oreto Antúnez; José E. Pérez-Ortín; Ed Hurt
Inner nuclear membrane proteins containing a LEM (LAP2, emerin, and MAN1) domain participate in different processes, including chromatin organization, gene expression, and nuclear envelope biogenesis. In this study, we identify a robust genetic interaction between transcription export (TREX) factors and yeast Src1, an integral inner nuclear membrane protein that is homologous to vertebrate LEM2. DNA macroarray analysis revealed that the expression of the phosphate-regulated genes PHO11, PHO12, and PHO84 is up-regulated in src1Δ cells. Notably, these PHO genes are located in subtelomeric regions of chromatin and exhibit a perinuclear location in vivo. Src1 spans the nuclear membrane twice and exposes its N and C domains with putative DNA-binding motifs to the nucleoplasm. Genome-wide chromatin immunoprecipitation–on-chip analyses indicated that Src1 is highly enriched at telomeres and subtelomeric regions of the yeast chromosomes. Our data show that the inner nuclear membrane protein Src1 functions at the interface between subtelomeric gene expression and TREX-dependent messenger RNA export through the nuclear pore complexes.
Journal of Biological Chemistry | 1998
Ana Ruiz-Garcia; Ramon Sendra; Mónica Galiana; Mercè Pamblanco; José E. Pérez-Ortín; Vicente Tordera
We have analyzed the histone acetyltransferase enzymes obtained from a series of yeast hat1,hat2, and gcn5 single mutants andhat1,hat2 and hat1,gcn5 double mutants. Extracts prepared from both hat1 and hat2mutant strains specifically lack the following two histone acetyltransferase activities: the well known cytoplasmic type B enzyme and a free histone H4-specific histone acetyltransferase located in the nucleus. The catalytic subunits of both cytoplasmic and nuclear enzymes have identical molecular masses (42 kDa), the same as that of HAT1. However, the cytoplasmic complex has a molecular mass (150 kDa) greater than that of the nuclear complex (110 kDa). The possible functions of HAT1 and HAT2 in the yeast nucleus are discussed. In addition, we have detected a yeast histone acetyltransferase not previously described, designated HAT-A4. This enzyme is located in the nucleus and is able to acetylate free and nucleosome-bound histones H3 and H4. Finally, we show that the hat1,gcn5 double mutant is viable and does not exhibit a new phenotype, thus suggesting the existence of several histone acetyltransferases with overlapping functions.