José F. Gonçalves
University of Brasília
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José F. Gonçalves.
Proceedings of the Royal Society B: Biological Sciences | 2016
Luz Boyero; Richard G. Pearson; Cang Hui; Mark O. Gessner; Javier Pérez; Markos A. Alexandrou; Manuel A. S. Graça; Bradley J. Cardinale; Ricardo Albariño; Muthukumarasamy Arunachalam; Leon A. Barmuta; Andrew J. Boulton; Andreas Bruder; Marcos Callisto; Eric Chauvet; Russell G. Death; David Dudgeon; Andrea C. Encalada; Verónica Ferreira; Ricardo Figueroa; Alexander S. Flecker; José F. Gonçalves; Julie E. Helson; Tomoya Iwata; Tajang Jinggut; Jude M. Mathooko; Catherine Mathuriau; Charles Mwithali M'Erimba; Marcelo S. Moretti; Catherine M. Pringle
Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder (Alnus glutinosa) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.
Hydrobiologia | 2014
Alan M. Tonin; Luiz Ubiratan Hepp; Rozane Maria Restello; José F. Gonçalves
We hypothesized that (i) the importance of shredders for leaf breakdown is more evident in terms of their biomass than their abundance, due to the large bodies and high-feeding efficiencies of some typical shredders; (ii) non-shredder invertebrates select more refractory leaves because these are a more stable substrate for colonization or to obtain other forms of food. To test these hypotheses, we performed a decomposition experiment with leaves of contrasting chemical composition in a tropical stream, and determined the changes in the ash-free dry mass (AFDM) of the litter, and the invertebrate abundance and biomass during a 44-day period. The biomass of shredders showed a positive relationship with AFDM remaining, whereas their abundance was unrelated to AFDM. While shredder abundance represented only 4–12% of total invertebrate abundance, shredder biomass constituted 19–36% of total invertebrate biomass. We conclude that (i) shredder biomass expresses better than abundance the role of this guild in the decomposition of leaf detritus, demonstrating that they are important for the functioning of tropical streams; (ii) incubation time rather than stability of leaf litter as a substrate influences colonization by non-shredder invertebrates.
PLOS ONE | 2014
Renan de Souza Rezende; Mauricio Mello Petrucio; José F. Gonçalves
The objective was to assess the effects of natural variation in the physical structure of the environment on biological communities and on the processing of Eucalyptus cloeziana and Inga laurina and to identify the controlling factors at different scales along stream order gradients. The study area consisted of 14 sampling sites distributed within a tropical watershed (1st, 2nd, 3rd and 4th order streams replicated in 4 sub-basins). Our samples consisted of 3 g of leaves of E. cloeziana (high-quality) and I. laurina (low-quality) placed in 252 bags with 10mm mesh (measured by the chemical composition of the detritus). Four samples of each leaf type were collected periodically (three times) over a period of 75–125 days and washed on a sieve to separate the invertebrates. A series of leaf disks were cut to determine ash-free dry mass, polyphenol, lignin, cellulose, total microbial biomass and fungal biomass, and the remaining material was oven-dried to determine the dry weight. We performed analyses within and between spatial scales (regional and local) to assess which watershed scale was the more import determinant of the leaf breakdown rate (k). The microbial and shredder were most influenced at the local scale (stream order). Shredders were influenced by microorganisms, with stronger interactions between them than were found to drive the k at the local scale. Moreover, differences in the overall k and abiotic variables were more strongly influenced at the regional scale (sub-basin), showing that the study scale alters the response of the studied variables. We found higher k values at higher values of water velocity, dissolved oxygen and temperature, all of which accelerate biological metabolism in response to variations on the regional scale. Watersheds with warmer microclimates and streams with higher nutrient levels and oxygen could be accelerating the ecosystem metabolism, independent of the detritus quality.
Zoologia (Curitiba) | 2014
Renan de Souza Rezende; Anderson Medeiros dos Santos; Carlos Henke-Oliveira; José F. Gonçalves
Interactions between terrestrial and aquatic systems influence the structure of river habitats and, consequently, affect their benthic macroinvertebrate composition. The aim of this study was to evaluate the effects of spatial and environmental variables (local physical and chemical variables of water and regional landscape characteristics) on the benthic macroinvertebrate community of the Pandeiros River Basin. Biotic and abiotic variables were evaluated at 20 sampling sites distributed across the primary sub-basins of the Pandeiros River Basin. We found that the macroinvertebrates were primarily affected by environmental variables. The most important environmental variables were pebble proportion and water conductivity at the local scale (7.2% of explained variation) and elevation and nonforest areas at the regional scale (6.9% of explained variation). The spatial variables were representative only in shared explained variation with the environmental matrices (local-spatial = 0.2% and regional-spatial = 2%; all matrices combined = 4.4%). Sampling sites with higher non-forest areas, lower elevations, and steeper slopes presented low pebble fractions and higher electrical conductivities. Habitat diversity was lower when the percentage of pebbles decreased, resulting in decreased taxonomic richness and diversity in macroinvertebrate communities. High electrical conductivities and non-forest areas also had negative effects on macroinvertebrate density due to the loss of habitat diversity. We conclude that higher proportions of pebbles in the substrate and higher altitudes were likely the primary variables for positive effects on the taxonomic richness and density of macroinvertebrate communities.
Scientific Reports | 2017
Luz Boyero; Manuel A. S. Graça; Alan M. Tonin; Javier Pérez; Andrew J.M. Swafford; Verónica Ferreira; Andrea Landeira-Dabarca; Markos A. Alexandrou; Mark O. Gessner; Brendan G. McKie; Ricardo Albariño; Leon A. Barmuta; Marcos Callisto; Julián Chará; Eric Chauvet; Checo Colón-Gaud; David Dudgeon; Andrea C. Encalada; Ricardo Figueroa; Alexander S. Flecker; Tadeusz Fleituch; André Frainer; José F. Gonçalves; Julie E. Helson; Tomoya Iwata; Jude M. Mathooko; Charles M’Erimba; Catherine M. Pringle; Alonso Ramírez; Christopher M. Swan
Plant litter represents a major basal resource in streams, where its decomposition is partly regulated by litter traits. Litter-trait variation may determine the latitudinal gradient in decomposition in streams, which is mainly microbial in the tropics and detritivore-mediated at high latitudes. However, this hypothesis remains untested, as we lack information on large-scale trait variation for riparian litter. Variation cannot easily be inferred from existing leaf-trait databases, since nutrient resorption can cause traits of litter and green leaves to diverge. Here we present the first global-scale assessment of riparian litter quality by determining latitudinal variation (spanning 107°) in litter traits (nutrient concentrations; physical and chemical defences) of 151 species from 24 regions and their relationships with environmental factors and phylogeny. We hypothesized that litter quality would increase with latitude (despite variation within regions) and traits would be correlated to produce ‘syndromes’ resulting from phylogeny and environmental variation. We found lower litter quality and higher nitrogen:phosphorus ratios in the tropics. Traits were linked but showed no phylogenetic signal, suggesting that syndromes were environmentally determined. Poorer litter quality and greater phosphorus limitation towards the equator may restrict detritivore-mediated decomposition, contributing to the predominance of microbial decomposers in tropical streams.
Acta Limnologica Brasiliensia | 2013
Renan de Souza Rezende; Marcelo de Oliveira Pinto; José F. Gonçalves; Mauricio Mello Petrucio
AIM: The objective of this study was to determine the rate of decomposition of two dominant arboreal species (Rhizophora mangle and Avicennia schaueriana) in two Brazilian subtropical mangroves (Ratones and Itacorubi) and their relationship with abiotic factors during two periods of the year (winter and summer). METHODS: Senescent leaves (4 ± 0.1 g dry weight) were placed into litter bags (20 × 25 cm with 1 cm mesh size) and submersed in mangrove forests during a winter and a summer sampling period. Replicates (n = 4) of each detritus sample were obtained from the mangroves after 7, 15, 30, 60, 90 and 120 days of incubation during both time periods. During each period, in situ measurements were taken to obtain the temperature, electrical conductivity, pH, and dissolved oxygen in the water column. RESULTS: The species R. mangle and A. schaueriana exhibited slow rates of decomposition at Itacorubi and intermediate rates at Ratones during the winter, while quick rates were observed at both sites during the summer; this result suggested that water temperature is an influential factor. There was no difference in the loss of mass between the sites during the winter, but in the summer, the highest values were observed for R. mangle in Ratones site. The highest summer temperatures were negatively associated with mass loss, suggesting that the temperature is an influential factor. During the winter, remaining mass was associated negatively with electrical conductivity, possibly because of a greater resource available to decomposing communities, and it was also positively associated with oxygen, revealing a pattern opposite to that observed in the literature. CONCLUSIONS: Our results showed that decomposition accelerated with higher temperatures and that electrical conductivity decelerated with increased dissolved oxygen, confirming the effects of abiotic factors on both detritus decomposition and mangrove functioning.
Brazilian Archives of Biology and Technology | 1999
Paulo R. Brum; Vinicius F. Farjalla; José F. Gonçalves; Anderson Medeiros dos Santos; Maurício T. Pôrto; Elisa D. R. Vieira; Flávia M. Ferreira; Irineu Bianchini Jr.
In this work, we describe qualitative and quantitative aspects of the cycling of detritus of aquatic macrophytes and carbohydrates in two coastal lagoons of the northeastern part of the State of Rio de Janeiro. Samples of water of the Imboassica and Cabiunas lagoons were enriched with sucrose. Samples of water of the Cabiunas lagoon were also utilized to arrange mineralization chambers with fragments of three species of aquatic macrophytes found in these lagoons (Typha domingensis, Potamogeton stenostachys and Nymphaea ampla). Following that, the bottles were aerated and incubated (in the laboratory) for a period of 8 days. The concentrations of dissolved oxygen, the pH, the electrical conductivity and the temperature were daily measured. The anaerobic processes were inhibited by periodical aeration of the bottles. The results suggested that the mineralization process in Imboassica lagoon was more efficient; in Cabiunas lagoon the process of immobilization of the organic matter was dominant. In the short term, maximum oxygen uptake occurred in the mineralization of N. ampla, followed by the mineralization of P. stenostachys and of T. domingensis. However, it was estimated that in long term the mineralization of P. stenostachys showed a greater oxygen uptake.
Functional Ecology | 2017
Alan M. Tonin; Luz Boyero; Silvia Monroy; Ana Basaguren; Javier Pérez; Richard G. Pearson; Bradley J. Cardinale; José F. Gonçalves; Jesús Pozo
1. We are facing major biodiversity loss and there is evidence that such loss can alter ecosystem functioning. However, the effects of plant diversity on decomposition - a key component of the global carbon cycle - are still unclear. A recent study suggested that a plant trait - their nitrogen (N)-fixing capacity - could mediate effects of litter diversity on decomposition by means of a microbial transfer of N from N-fixers to non-fixers. 2. We explored this possibility in a microcosm experiment in which we manipulated litter species richness (one, two or four species), N-fixing capacity (N-fixer or non-fixer species), the presence of detritivores (Sericostoma pyrenaicum larvae present or absent) and water N concentration [natural stream water (0.366 mgL(-1) of NO3-N) or elevated N concentration (five times the natural concentration: 1.835mgL(-1))]. 3. We show that litter diversity accelerated decomposition by micro-organisms and detritivores (by 7% and 15% respectively), mostly through complementarity effects. However, enhanced decomposition did not result in higher detritivore growth, possibly because all litter combinations provided sufficient resources for their maximum growth. 4. The plant N-fixing capacity had no effect on decomposition, which varied among species most likely because of differences in a combination of litter traits. Detritivores maximized the consumption of their preferred resource in litter mixtures, but also exploited less preferred resources, and their C:N ratios increased during the experiment regardless of litter type or water N concentration. 5. Microbial decomposition of litter with low N content was enhanced at elevated water N concentration, suggesting that micro-organisms used nutrients from the water when those nutrients were limiting in leaf litter. In contrast, detritivore growth was impaired at elevated water N concentration, possibly because a stoichiometric imbalance entails metabolic costs. 6. SOur findings suggest that loss of plant diversity in riparian forests would mostly affect decomposition in streams of high nutrient status, where effects on microbial decomposition would be more evident and detritivore populations may be reduced.
Archive | 2016
Marcos Callisto; José F. Gonçalves; Raphael Ligeiro
The rupestrian grasslands in Minas Gerais State comprise headwaters of important watersheds that drainages for millions citizens in over 400 cities in Sao Francisco and Doce river basins. The human activities in the rupestrian grasslands include domestic supply, agriculture, forestry, cattle raising, industry, and mineral extraction. This chapter addresses the ecological conditions of streams in terms of water quality (physical and chemical characteristics, nutrient availability), habitat quality and structure (diversity of benthic macroinvertebrates, structure of the riparian vegetation, riparian food webs, invertebrate drift), and ecosystem functioning (allochthonous and autochthonous production, dynamics of coarse and fine particulate organic matter, leaf litter breakdown of native and alien species). A synthesis of 20 years of ongoing research on the headwaters in the rupestrian grasslands is included, together with perspectives for future conservation and management of water resources.
Ecosystems | 2018
Verónica Ferreira; Luz Boyero; Clementina Calvo; Francisco Correa; Ricardo Figueroa; José F. Gonçalves; Guillermo Goyenola; Manuel A. S. Graça; Luiz Ubiratan Hepp; Samuel T. Kariuki; Anahí López-Rodríguez; Néstor Mazzeo; Charles M’Erimba; Silvia Monroy; Alessandra Peil; Jesús Pozo; Renan de Souza Rezende; Franco Teixeira-de-Mello
Forest change is a major environmental problem worldwide. Forest streams, with their large aquatic–terrestrial interface and strong dependence on terrestrially derived organic matter, are highly sensitive to forest changes. Fast-wood plantations can be particularly threatening if they markedly differ from native forests. Eucalyptus plantations, in particular, cover large areas worldwide (> 20 million ha, mostly from 35°S to 35°N), but their effects on stream functioning have been addressed mostly in the Iberian Peninsula, which limits generalization to other regions. We assessed the effect of eucalyptus plantations on total (microbial decomposers and macroinvertebrates; in coarse mesh bags) and microbial-driven (in fine mesh bags) leaf litter decomposition by comparing streams flowing through native forests and eucalyptus plantations in seven regions in the Iberian Peninsula, Central Africa and South America. We found an overall significant inhibition of total litter decomposition by 23%. The effect did not significantly differ across regions, although a significant inhibition was found for Spain (− 41%), South Brazil (− 31%) and Uruguay (− 36%) (Portugal had a marginally nonsignificant inhibition by 50%) but not for other regions, suggesting that the effects of plantations in temperate climates are mediated through effects on macroinvertebrate communities. Contrarily, the overall effect for microbial-driven litter decomposition was non-significant, but it significantly differed across regions with a significant stimulation in Central Brazil (110%) and Uruguay (32%), and nonsignificant effects for other regions (Kenya had a marginally nonsignificant inhibition by 48%), suggesting that functional redundancy among microbial communities is not general and effects can occur if plantations induce changes in nutrient availability, solar irradiation or litter characteristics.