Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Franco da Silveira is active.

Publication


Featured researches published by José Franco da Silveira.


Trends in Parasitology | 2001

Chagas disease: recombinant Trypanosoma cruzi antigens for serological diagnosis

José Franco da Silveira; Eufrosina S. Umezawa; Alejandro O. Luquetti

Diagnosis of individuals infected by Trypanosoma cruzi is performed mainly by serological tests using crude antigens, which might crossreact with other infections. In the past ten years, many recombinant T. cruzi proteins and synthetic peptides have been described, and some are already on the market. Managers of laboratories and blood banks need to make decisions on a cost-benefit basis whether to include these new-generation tests. Here, we indicate antigens that are likely to prove most useful.


Journal of Proteome Research | 2013

Proteomic Analysis of Trypanosoma cruzi Secretome: Characterization of Two Populations of Extracellular Vesicles and Soluble Proteins

Ethel Bayer-Santos; Clemente Aguilar-Bonavides; Silas P. Rodrigues; Esteban M. Cordero; Alexandre F. Marques; Armando Varela-Ramirez; Hyungwon Choi; Nobuko Yoshida; José Franco da Silveira; Igor C. Almeida

Microorganisms use specialized systems to export virulence factors into host cells. Secretion of effector proteins into the extracellular environment has been described in Trypanosoma cruzi; however, a comprehensive proteomic analysis of the secretome and the secretion mechanisms involved remain elusive. Here, we present evidence that T. cruzi releases proteins associated with vesicles that are formed by at least two different mechanisms. Transmission electron microscopy showed larger vesicles budding from the plasma membrane of noninfective epimastigotes and infective metacyclic trypomastigotes, as well as smaller vesicles within the flagellar pocket of both forms. Parasite conditioned culture supernatant was fractionated and characterized by morphological, immunochemical, and proteomic analyses. Three fractions were obtained by differential ultracentrifugation: the first enriched in larger vesicles resembling ectosomes, the second enriched in smaller vesicles resembling exosomes, and a third fraction enriched in soluble proteins not associated with extracellular vesicles. Label-free quantitative proteomic analysis revealed a rich collection of proteins involved in metabolism, signaling, nucleic acid binding, and parasite survival and virulence. These findings support the notion that T. cruzi uses different secretion pathways to excrete/secrete proteins. Moreover, our results suggest that metacyclic forms may use extracellular vesicles to deliver cargo into host cells.


Biochemical Journal | 2005

Molecular, functional and structural properties of the prolyl oligopeptidase of Trypanosoma cruzi (POP Tc80), which is required for parasite entry into mammalian cells

Izabela M. D. Bastos; Philippe Grellier; Natália F. Martins; Gloria Cadavid-Restrepo; Marian R. de Souza-Ault; Koen Augustyns; Antonio R. L. Teixeira; Joseph Schrevel; Bernard Maigret; José Franco da Silveira; Jaime M. Santana

We have demonstrated that the 80 kDa POP Tc80 (prolyl oligopeptidase of Trypanosoma cruzi) is involved in the process of cell invasion, since specific inhibitors block parasite entry into non-phagocytic mammalian host cells. In contrast with other POPs, POP Tc80 is capable of hydrolysing large substrates, such as fibronectin and native collagen. In this study, we present the cloning of the POPTc80 gene, whose deduced amino acid sequence shares considerable identity with other members of the POP family, mainly within its C-terminal portion that forms the catalytic domain. Southern-blot analysis indicated that POPTc80 is present as a single copy in the genome of the parasite. These results are consistent with mapping of POPTc80 to a single chromosome. The active recombinant protein (rPOP Tc80) displayed kinetic properties comparable with those of the native enzyme. Novel inhibitors were assayed with rPOP Tc80, and the most efficient ones presented values of inhibition coefficient Ki < or = 1.52 nM. Infective parasites treated with these specific POP Tc80 inhibitors attached to the surface of mammalian host cells, but were incapable of infecting them. Structural modelling of POP Tc80, based on the crystallized porcine POP, suggested that POP Tc80 is composed of an alpha/beta-hydrolase domain containing the catalytic triad Ser548-Asp631-His667 and a seven-bladed beta-propeller non-catalytic domain. Docking analysis suggests that triple-helical collagen access to the catalytic site of POP Tc80 occurs in the vicinity of the interface between the two domains.


Diagnostic Microbiology and Infectious Disease | 2003

Chagas' disease diagnosis: a multicentric evaluation of Chagas Stat-Pak, a rapid immunochromatographic assay with recombinant proteins of Trypanosoma cruzi.

Alejandro O. Luquetti; Carlos Ponce; Elisa Ponce; Javan Esfandiari; Alejandro G. Schijman; Susana Revollo; Néstor Añez; Bianca Zingales; Rafael Ramgel-Aldao; Antonio González; Mariano J. Levin; Eufrosina S. Umezawa; José Franco da Silveira

A rapid serologic test for diagnosis of T. cruzi infection (Chagas Stat Pak) was developed using recombinant proteins in an immunochromatographic assay. This cassette format test was evaluated first in blind with a panel of 393 coded serum samples. The Chagas Stat-Pak identified 197 infected (98.5% sensitivity) and 183 non-infected individuals (94.8% specificity). A second evaluation was performed with 352 sera from four Latin America countries tested independently in each country, showing a sensitivity of 100% and specificity of 98.6%. A third set of tests comparing sera with plasma and eluates from filter paper as well as serum preserved in 50% glycerol did show identical results as those obtained with serum. This rapid test (15 min) uses one device per sample, does not require refrigeration nor a laboratory structure or specialized skills to be performed, accepts different types of samples and may be stored for long periods of time for result checking and documentation. These attributes together with the high sensitivity and specificity demonstrated herein, make this test a suitable tool for field studies, small laboratories and emergencies at blood banks in the countryside of endemic areas.


Acta Tropica | 1997

Trypanosoma cruzi genome project: biological characteristics and molecular typing of clone CL Brener

Bianca Zingales; Maria Elizabeth S Pereira; Riva P. Oliveira; Katia A. Almeida; Eufrosina S. Umezawa; Ricardo P. Souto; Nancy Vargas; Maria I. Cano; José Franco da Silveira; Nédia S. Nehme; Carlos M. Morel; Zigman Brener; Andrea M. Macedo

Clone CL Brener is the reference organism used in the Trypanosoma cruzi Genome Project. CL Brener was obtained by cloning procedures from bloodstream trypomastigotes isolated from mice infected with the CL strain. The doubling time of CL Brener epimastigotes cultured at 28 degrees C in liver infusion-tryptose (LIT) medium is 58 +/- 13 h. Differentiation to metacyclic forms is induced by incubation of epimastigotes in LIT-20% Graces medium. Metacyclics give very low parasitemia in mice, contrary to what is observed for blood forms which promote 100% mortality of the animals with inocula of 5 x 10(3) parasites. CL Brener blood forms are highly susceptible to nifurtimox, benznidazole and ketoconazole. Allopurinol is inefficient in the treatment of mice experimental infection. The clone infects mammalian cultured cells and performs the complete intracellular cycle at 33 and 37 degrees C. The molecular typing of CL Brener has been done by isoenzymatic profiles; sequencing of a 24S alpha ribosomal RNA gene domain and by schizodeme, randomly amplified polymorphic DNA and DNA fingerprinting analyses. For each typing approach the patterns obtained do not change after prolonged parasite subcultivation in LIT medium (up to 100 generations). The stability of the molecular karyotype of the clone was also confirmed.


DNA Research | 2013

The Genome Sequence of Leishmania (Leishmania) amazonensis: Functional Annotation and Extended Analysis of Gene Models

Fernando Real; Ramon Vidal; Marcelo Falsarella Carazzolle; Jorge Maurício Costa Mondego; Gustavo G.L. Costa; Roberto H. Herai; Martin Würtele; Lucas Miguel de Carvalho; Renata C. Ferreira; Renato A. Mortara; Clara Lúcia Barbiéri; Piotr A. Mieczkowski; José Franco da Silveira; Marcelo R. S. Briones; Gonçalo Amarante Guimarães Pereira; Diana Bahia

We present the sequencing and annotation of the Leishmania (Leishmania) amazonensis genome, an etiological agent of human cutaneous leishmaniasis in the Amazon region of Brazil. L. (L.) amazonensis shares features with Leishmania (L.) mexicana but also exhibits unique characteristics regarding geographical distribution and clinical manifestations of cutaneous lesions (e.g. borderline disseminated cutaneous leishmaniasis). Predicted genes were scored for orthologous gene families and conserved domains in comparison with other human pathogenic Leishmania spp. Carboxypeptidase, aminotransferase, and 3′-nucleotidase genes and ATPase, thioredoxin, and chaperone-related domains were represented more abundantly in L. (L.) amazonensis and L. (L.) mexicana species. Phylogenetic analysis revealed that these two species share groups of amastin surface proteins unique to the genus that could be related to specific features of disease outcomes and host cell interactions. Additionally, we describe a hypothetical hybrid interactome of potentially secreted L. (L.) amazonensis proteins and host proteins under the assumption that parasite factors mimic their mammalian counterparts. The model predicts an interaction between an L. (L.) amazonensis heat-shock protein and mammalian Toll-like receptor 9, which is implicated in important immune responses such as cytokine and nitric oxide production. The analysis presented here represents valuable information for future studies of leishmaniasis pathogenicity and treatment.


Journal of Proteome Research | 2009

Proteomic Analysis of Detergent-Solubilized Membrane Proteins from Insect-Developmental Forms of Trypanosoma cruzi†

Esteban M. Cordero; Ernesto S. Nakayasu; Luciana Girotto Gentil; Nobuko Yoshida; Igor C. Almeida; José Franco da Silveira

The cell surface of Trypanosoma cruzi, the etiologic agent of Chagas disease, is covered by a dense layer of glycosylphosphatidylinositol (GPI)-anchored molecules. These molecules are involved in a variety of interactions between this parasite and its mammalian and insect hosts. Here, using the neutral detergent Triton X-114, we obtained fractions rich in GPI-anchored and other membrane proteins from insect developmental stages of T. cruzi. These fractions were analyzed by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS), resulting in the identification of 98 proteins of metacyclic trypomastigotes and 280 of epimastigotes. Of those, approximately 65% (n=245) had predicted lipid post-translational modification sites (i.e., GPI-anchor, myristoylation, or prenylation), signal-anchor sequence, or transmembrane domains that could explain their solubility in detergent solution. The identification of some of these modified proteins was also validated by immunoblotting. We also present evidence that, in contrast to the noninfective proliferative epimastigote forms, the infective nonproliferative metacyclic trypomastigote forms express a large repertoire of surface glycoproteins, such as GP90 and GP82, which are involved in adhesion and invasion of host cells. Taken together, our results unequivocally show stage-specific protein profiles that appear to be related to the biology of each T. cruzi insect-derived developmental form.


Parasitology Today | 1997

The Trypanosoma cruzi genome initiative

Bianca Zingales; Edson Rondinelli; Wim Degrave; José Franco da Silveira; Mariano J. Levin; Denis Le Paslier; Farrokh Modabber; Boris Dobrokhotov; John Swindle; John M. Kelly; Lena Åslund; Jörg D. Hoheisel; Andrés M. Ruiz; Juan José Cazzulo; Ulf Pettersson; Alberto C.C. Frasch

An initiative was launched in 1994 by the Special Programme for Research and Training in Tropical Diseases (TDR) of the WHO to analyse the genomes of the parasites Filaria, Schistosoma, Leishmania, Trypanosoma brucei and Trypanosoma cruzi. Five networks were established through wide publicity, holding meetings of key laboratories and developing proposals which were then reviewed by the Steering Committee of Strategic Research for financial support. The aim of the Programme was to use the platform of these networks to: (1) train scientists from tropical disease-endemic countries; (2) transfer technology and share material and expertise, thereby reducing costs and increasing efficiency; and (3) provide an information system that is accessible globally as soon as the results become available. The initial target was to produce a low-resolution genome map for each of the parasites, but it soon became evident that by using rapidly developing technologies, it might be feasible to complete DNA-sequence analysis for some of the parasites in the next decade, as discussed here by Alberto Carlos Frasch and colleagues, with particular focus on the T. cruzi genome initiative.


PLOS ONE | 2011

Genome Size, Karyotype Polymorphism and Chromosomal Evolution in Trypanosoma cruzi

Renata T. Souza; Fabio Mitsuo Lima; Roberto Moraes Barros; Danielle R. Cortez; Michele Fernandes Santos; Esteban M. Cordero; Jeronimo C. Ruiz; Samuel Goldenberg; Marta M. G. Teixeira; José Franco da Silveira

Background The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (José-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.


Biochemical Journal | 2003

A novel protein phosphatase 2A (PP2A) is involved in the transformation of human protozoan parasite Trypanosoma cruzi

Jorge González; Alberto Cornejo; Márcia Regina Machado dos Santos; Esteban M. Cordero; Bessy Gutiérrez; Patricio Porcile; Renato A. Mortara; Hernán Sagua; José Franco da Silveira; Jorge Araya

Here we provide evidence for a critical role of PP2As (protein phosphatase 2As) in the transformation of Trypanosoma cruzi. In axenic medium at pH 5.0, trypomastigotes rapidly transform into amastigotes, a process blocked by okadaic acid, a potent PP2A inhibitor, at concentrations as low as 0.1 microM. 1-Norokadaone, an inactive okadaic acid analogue, did not affect the transformation. Electron microscopy studies indicated that okadaic acid-treated trypomastigotes had not undergone ultrastructural modifications, reinforcing the idea that PP2A inhibits transformation. Using a microcystin-Sepharose affinity column we purified the native T. cruzi PP2A. The enzyme displayed activity against 32P-labelled phosphorylase a that was inhibited in a dose-dependent manner by okadaic acid. The protein was also submitted to MS and, from the peptides obtained, degenerate primers were used to clone a novel T. cruzi PP2A enzyme by PCR. The isolated gene encodes a protein of 303 amino acids, termed TcPP2A, which displayed a high degree of homology (86%) with the catalytic subunit of Trypanosoma brucei PP2A. Northern-blot analysis revealed the presence of a major 2.1-kb mRNA hybridizing in all T. cruzi developmental stages. Southern-blot analysis suggested that the TcPP2A gene is present in low copy number in the T. cruzi genome. These results are consistent with the mapping of PP2A genes in two chromosomal bands by pulsed-field gel electrophoresis and chromoblot hybridization. Our studies suggest that in T. cruzi PP2A is important for the complete transformation of trypomastigotes into amastigotes during the life cycle of this protozoan parasite.

Collaboration


Dive into the José Franco da Silveira's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuko Yoshida

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Renato A. Mortara

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Esteban M. Cordero

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Fabio Mitsuo Lima

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Mariano J. Levin

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar

Marjorie Mendes Marini

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Jorge Araya

University of Antofagasta

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge