Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose G. Molina is active.

Publication


Featured researches published by Jose G. Molina.


Journal of Clinical Investigation | 2006

Role of A2B adenosine receptor signaling in adenosine-dependent pulmonary inflammation and injury

Chun Xiao Sun; Hongyan Zhong; Amir Mohsenin; Eva Morschl; Janci L. Chunn; Jose G. Molina; Luiz Belardinelli; Dewan Zeng; Michael R. Blackburn

Adenosine has been implicated in the pathogenesis of chronic lung diseases such as asthma and chronic obstructive pulmonary disease. In vitro studies suggest that activation of the A2B adenosine receptor (A2BAR) results in proinflammatory and profibrotic effects relevant to the progression of lung diseases; however, in vivo data supporting these observations are lacking. Adenosine deaminase-deficient (ADA-deficient) mice develop pulmonary inflammation and injury that are dependent on increased lung adenosine levels. To investigate the role of the A2BAR in vivo, ADA-deficient mice were treated with the selective A2BAR antagonist CVT-6883, and pulmonary inflammation, fibrosis, and airspace integrity were assessed. Untreated and vehicle-treated ADA-deficient mice developed pulmonary inflammation, fibrosis, and enlargement of alveolar airspaces; conversely, CVT-6883-treated ADA-deficient mice showed less pulmonary inflammation, fibrosis, and alveolar airspace enlargement. A2BAR antagonism significantly reduced elevations in proinflammatory cytokines and chemokines as well as mediators of fibrosis and airway destruction. In addition, treatment with CVT-6883 attenuated pulmonary inflammation and fibrosis in wild-type mice subjected to bleomycin-induced lung injury. These findings suggest that A2BAR signaling influences pathways critical for pulmonary inflammation and injury in vivo. Thus in chronic lung diseases associated with increased adenosine, antagonism of A2BAR-mediated responses may prove to be a beneficial therapy.


Journal of Immunology | 2003

Activation of Murine Lung Mast Cells by the Adenosine A3 Receptor

Hongyan Zhong; Sergiy G. Shlykov; Jose G. Molina; Barbara M. Sanborn; Marlene A. Jacobson; Stephen L. Tilley; Michael R. Blackburn

Adenosine has been implicated to play a role in asthma in part through its ability to influence mediator release from mast cells. Most physiological roles of adenosine are mediated through adenosine receptors; however, the mechanisms by which adenosine influences mediator release from lung mast cells are not understood. We established primary murine lung mast cell cultures and used real-time RT-PCR and immunofluorescence to demonstrate that the A2A, A2B, and A3 adenosine receptors are expressed on murine lung mast cells. Studies using selective adenosine receptor agonists and antagonists suggested that activation of A3 receptors could induce mast cell histamine release in association with increases in intracellular Ca2+ that were mediated through Gi and phosphoinositide 3-kinase signaling pathways. The function of A3 receptors in vivo was tested by exposing mice to the A3 receptor agonist, IB-MECA. Nebulized IB-MECA directly induced lung mast cell degranulation in wild-type mice while having no effect in A3 receptor knockout mice. Furthermore, studies using adenosine deaminase knockout mice suggested that elevated endogenous adenosine induced lung mast cell degranulation by engaging A3 receptors. These results demonstrate that the A3 adenosine receptor plays an important role in adenosine-mediated murine lung mast cell degranulation.


Journal of Clinical Investigation | 2008

Excess adenosine in murine penile erectile tissues contributes to priapism via A2B adenosine receptor signaling

Tiejuan Mi; Shahrzad Abbasi; Hong Zhang; Karen L. Uray; Janci L. Chunn; Ling Wei Xia; Jose G. Molina; Norman W. Weisbrodt; Rodney E. Kellems; Michael R. Blackburn; Yang Xia

Priapism, abnormally prolonged penile erection in the absence of sexual excitation, is associated with ischemia-mediated erectile tissue damage and subsequent erectile dysfunction. It is common among males with sickle cell disease (SCD), and SCD transgenic mice are an accepted model of the disorder. Current strategies to manage priapism suffer from a poor fundamental understanding of the molecular mechanisms underlying the disorder. Here we report that mice lacking adenosine deaminase (ADA), an enzyme necessary for the breakdown of adenosine, displayed unexpected priapic activity. ADA enzyme therapy successfully corrected the priapic activity both in vivo and in vitro, suggesting that it was dependent on elevated adenosine levels. Further genetic and pharmacologic evidence demonstrated that A2B adenosine receptor-mediated (A2BR-mediated) cAMP and cGMP induction was required for elevated adenosine-induced prolonged penile erection. Finally, priapic activity in SCD transgenic mice was also caused by elevated adenosine levels and A2BR activation. Thus, we have shown that excessive adenosine accumulation in the penis contributes to priapism through increased A2BR signaling in both Ada -/- and SCD transgenic mice. These findings provide insight regarding the molecular basis of priapism and suggest that strategies to either reduce adenosine or block A2BR activation may prove beneficial in the treatment of this disorder.


Journal of Immunology | 2004

A3 Adenosine Receptor Signaling Contributes to Airway Inflammation and Mucus Production in Adenosine Deaminase-Deficient Mice

Hays W. J. Young; Jose G. Molina; Dawn Dimina; Hongyan Zhong; Marlene A. Jacobson; Lee Nien L Chan; Teh Sheng Chan; James J. Lee; Michael R. Blackburn

Adenosine signaling has been implicated in chronic lung diseases such as asthma and chronic obstructive pulmonary disease; however, the specific roles of the various adenosine receptors in processes central to these disorders are not well understood. In this study, we have investigated the role(s) of the A3 adenosine receptor in adenosine-dependent pulmonary inflammation observed in adenosine deaminase (ADA)-deficient mice. The A3 receptor (A3R) was found to be expressed in eosinophils and mucus-producing cells in the airways of ADA-deficient mice. Treatment of ADA-deficient mice with MRS 1523, a selective A3R antagonist, prevented airway eosinophilia and mucus production. Similar findings were seen in the lungs of ADA/A3 double knockout mice. Although eosinophils were decreased in the airways of ADA-deficient mice following antagonism or removal of the A3R, elevations in circulating and lung interstitial eosinophils persisted, suggesting signaling through the A3R is needed for the migration of eosinophils into the airways. These findings identify an important role for the A3R in regulating lung eosinophilia and mucus production in an environment of elevated adenosine.


Journal of Clinical Investigation | 2005

A protective role for the A1 adenosine receptor in adenosine-dependent pulmonary injury

Chun Xiao Sun; Hays W. J. Young; Jose G. Molina; Jonathan B. Volmer; Jurgen Schnermann; Michael R. Blackburn

Adenosine is a signaling nucleoside that has been implicated in the regulation of asthma and chronic obstructive pulmonary disease. Adenosine signaling can serve both pro- and anti-inflammatory functions in tissues and cells. In this study we examined the contribution of A(1) adenosine receptor (A(1)AR) signaling to the pulmonary inflammation and injury seen in adenosine deaminase-deficient (ADA-deficient) mice, which exhibit elevated adenosine levels. Experiments revealed that transcript levels for the A(1)AR were elevated in the lungs of ADA-deficient mice, in which expression was localized predominantly to alveolar macrophages. Genetic removal of the A(1)AR from ADA-deficient mice resulted in enhanced pulmonary inflammation along with increased mucus metaplasia and alveolar destruction. These changes were associated with the exaggerated expression of the Th2 cytokines IL-4 and IL-13 in the lungs, together with increased expression of chemokines and matrix metalloproteinases. These findings demonstrate that the A(1)AR plays an anti-inflammatory and/or protective role in the pulmonary phenotype seen in ADA-deficient mice, which suggests that A(1)AR signaling may serve to regulate the severity of pulmonary inflammation and remodeling seen in chronic lung diseases by controlling the levels of important mediators of pulmonary inflammation and damage.


Journal of Immunology | 2005

Adenosine-Dependent Pulmonary Fibrosis in Adenosine Deaminase-Deficient Mice

Janci L. Chunn; Jose G. Molina; Tiejuan Mi; Yang Xia; Rodney E. Kellems; Michael R. Blackburn

Pulmonary fibrosis is a common feature of numerous lung disorders, including interstitial lung diseases, asthma, and chronic obstructive pulmonary disease. Despite the prevalence of pulmonary fibrosis, the molecular mechanisms governing inflammatory and fibroproliferative aspects of the disorder are not clear. Adenosine is a purine-signaling nucleoside that is generated in excess during cellular stress and damage. This signaling molecule has been implicated in the regulation of features of chronic lung disease; however, the impact of adenosine on pulmonary fibrosis is not well understood. The goal of this study was to explore the impact of endogenous adenosine elevations on pulmonary fibrosis. To accomplish this, adenosine deaminase (ADA)-deficient mice were treated with various levels of ADA enzyme replacement therapy to regulate endogenous adenosine levels in the lung. Maintaining ADA-deficient mice on low dosages of ADA enzyme therapy led to chronic elevations in lung adenosine levels that were associated with pulmonary inflammation, expression of profibrotic molecules, collagen deposition, and extreme alteration in airway structure. These features could be blocked by preventing elevations in lung adenosine. Furthermore, lowering lung adenosine levels after the establishment of pulmonary fibrosis resulted in a resolution of fibrosis. These findings demonstrate that chronic adenosine elevations are associated with pulmonary fibrosis in ADA-deficient mice and suggest that the adenosine functions as a profibrotic signal in the lung.


Journal of Immunology | 2014

Blockade of IL-6 Trans Signaling Attenuates Pulmonary Fibrosis

T. Le Thanh-Thuy; Harry Karmouty-Quintana; Ernestina Melicoff; T. Le Thanh-Truc; Tingting Weng; Ning Yuan Chen; Mesias Pedroza; Yang Zhou; Jonathan Davies; Kemly Philip; Jose G. Molina; Fayong Luo; Anuh T. George; Luis J. Garcia-Morales; Raquel R. Bunge; Brian A. Bruckner; Matthias Loebe; Harish Seethamraju; Sandeep K. Agarwal; Michael R. Blackburn

Idiopathic pulmonary fibrosis (IPF) is a lethal lung disease with progressive fibrosis and death within 2–3 y of diagnosis. IPF incidence and prevalence rates are increasing annually with few effective treatments available. Inhibition of IL-6 results in the attenuation of pulmonary fibrosis in mice. It is unclear whether this is due to blockade of classical signaling, mediated by membrane-bound IL-6Rα, or trans signaling, mediated by soluble IL-6Rα (sIL-6Rα). Our study assessed the role of sIL-6Rα in IPF. We demonstrated elevations of sIL-6Rα in IPF patients and in mice during the onset and progression of fibrosis. We demonstrated that protease-mediated cleavage from lung macrophages was important in production of sIL-6Rα. In vivo neutralization of sIL-6Rα attenuated pulmonary fibrosis in mice as seen by reductions in myofibroblasts, fibronectin, and collagen in the lung. In vitro activation of IL-6 trans signaling enhanced fibroblast proliferation and extracellular matrix protein production, effects relevant in the progression of pulmonary fibrosis. Taken together, these findings demonstrate that the production of sIL-6Rα from macrophages in the diseased lung contributes to IL-6 trans signaling that in turn influences events crucial in pulmonary fibrosis.


PLOS ONE | 2011

Interleukin-6 Contributes to Inflammation and Remodeling in a Model of Adenosine Mediated Lung Injury

Mesias Pedroza; Daniel J. Schneider; Harry Karmouty-Quintana; Julie Coote; Stevan Shaw; Rebecca M. Corrigan; Jose G. Molina; Joseph L. Alcorn; David J. Galas; Richard Gelinas; Michael R. Blackburn

Background Chronic lung diseases are the third leading cause of death in the United States due in part to an incomplete understanding of pathways that govern the progressive tissue remodeling that occurs in these disorders. Adenosine is elevated in the lungs of animal models and humans with chronic lung disease where it promotes air-space destruction and fibrosis. Adenosine signaling increases the production of the pro-fibrotic cytokine interleukin-6 (IL-6). Based on these observations, we hypothesized that IL-6 signaling contributes to tissue destruction and remodeling in a model of chronic lung disease where adenosine levels are elevated. Methodology/Principal Findings We tested this hypothesis by neutralizing or genetically removing IL-6 in adenosine deaminase (ADA)-deficient mice that develop adenosine dependent pulmonary inflammation and remodeling. Results demonstrated that both pharmacologic blockade and genetic removal of IL-6 attenuated pulmonary inflammation, remodeling and fibrosis in this model. The pursuit of mechanisms involved revealed adenosine and IL-6 dependent activation of STAT-3 in airway epithelial cells. Conclusions/Significance These findings demonstrate that adenosine enhances IL-6 signaling pathways to promote aspects of chronic lung disease. This suggests that blocking IL-6 signaling during chronic stages of disease may provide benefit in halting remodeling processes such as fibrosis and air-space destruction.


Journal of Immunology | 2009

Enhanced Airway Inflammation and Remodeling in Adenosine Deaminase-Deficient Mice Lacking the A2B Adenosine Receptor

Yang Zhou; Amir Mohsenin; Eva Morschl; Hays W. J. Young; Jose G. Molina; Wenbin Ma; Chun Xiao Sun; Hector Martinez-Valdez; Michael R. Blackburn

Adenosine is a signaling nucleoside that is generated in response to cellular injury and orchestrates the balance between tissue protection and the progression to pathological tissue remodeling. Adenosine deaminase (ADA)-deficient mice develop progressive airway inflammation and remodeling in association with adenosine elevations, suggesting that adenosine can promote features of chronic lung disease. Furthermore, pharmacological studies in ADA-deficient mice demonstrate that A2BR antagonism can attenuate features of chronic lung disease, implicating this receptor in the progression of chronic lung disease. This study examines the contribution of A2BR signaling in this model by generating ADA/A2BR double-knockout mice. Our hypothesis was that genetic removal of the A2BR from ADA-deficient mice would lead to diminished pulmonary inflammation and damage. Unexpectedly, ADA/A2BR double-knockout mice exhibited enhanced pulmonary inflammation and airway destruction. Marked loss of pulmonary barrier function and excessive airway neutrophilia are thought to contribute to the enhanced tissue damage observed. These findings support an important protective role for A2BR signaling during acute stages of lung disease.


Circulation Research | 2005

Genetic Deletion of the A1 Adenosine Receptor Limits Myocardial Ischemic Tolerance

Melissa E. Reichelt; Laura Willems; Jose G. Molina; Chun Xiao Sun; Janci C. Noble; Kevin J. Ashton; Jurgen Schnermann; Michael R. Blackburn; John Patrick Headrick

Adenosine receptors may be important determinants of intrinsic ischemic tolerance. Genetically modified mice were used to examine effects of global A1 adenosine receptor (A1AR) knockout (KO) on function and ischemic tolerance in perfused mouse hearts. Baseline contractile function and heart rate were unaltered by A1AR KO, which was shown to abolish the negative chronotropic effects of 2-chloroadenosine (A1AR-mediated) without altering A2 adenosine receptor–mediated coronary dilation. Tolerance to 25 minutes global normothermic ischemia (followed by 45 minutes reperfusion) was significantly limited by A1AR KO, with impaired contractile recovery (reduced by ≈25%) and enhanced lactate dehydrogenase (LDH) efflux (increased by ≈100%). Functional effects of A1AR KO involved worsened systolic pressure development with little to no change in diastolic dysfunction. In contrast, cardiac specific A1AR overexpression enhanced ischemic tolerance with a primary action on diastolic dysfunction. Nonselective receptor agonism (10 &mgr;mol/L 2-chloroadenosine) protected wild-type and also A1AR KO hearts (albeit to a lesser extent), implicating protection via subtypes additional to A1ARs. However, A1AR KO abrogated effects of 2-chloroadenosine on ischemic contracture and diastolic dysfunction. These data are the first demonstrating global deletion of the A1AR limits intrinsic myocardial resistance to ischemia. Data indicate the function of intrinsically activated A1ARs appears primarily to be enhancement of postischemic contractility and limitation of cell death.

Collaboration


Dive into the Jose G. Molina's collaboration.

Top Co-Authors

Avatar

Michael R. Blackburn

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Harry Karmouty-Quintana

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Tingting Weng

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Jonathan Davies

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Ning Yuan Chen

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Fayong Luo

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Mesias Pedroza

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Yang Xia

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Kemly Philip

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Brian A. Bruckner

Houston Methodist Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge