José G. Raya
New York University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José G. Raya.
Journal of Magnetic Resonance Imaging | 2007
Olaf Dietrich; José G. Raya; Scott B. Reeder; Maximilian F. Reiser; Stefan O. Schoenberg
To evaluate the validity of different approaches to determine the signal‐to‐noise ratio (SNR) in MRI experiments with multi‐element surface coils, parallel imaging, and different reconstruction filters.
Magnetic Resonance Imaging | 2008
Olaf Dietrich; José G. Raya; Scott B. Reeder; Michael Ingrisch; Maximilian F. Reiser; So Schoenberg
The statistical properties of background noise such as its standard deviation and mean value are frequently used to estimate the original noise level of the acquired data. This requires the knowledge of the statistical intensity distribution of the background signal, that is, the probability density of the occurrence of a certain signal intensity. The influence of many new MRI techniques and, in particular, of various parallel-imaging methods on the noise statistics has neither been rigorously investigated nor experimentally demonstrated yet. In this study, the statistical distribution of background noise was analyzed for MR acquisitions with a single-channel and a 32-channel coil, with sum-of-squares (SoS) and spatial-matched-filter (SMF) data combination, with and without parallel imaging using k-space and image-domain algorithms, with real-part and conventional magnitude reconstruction and with several reconstruction filters. Depending on the imaging technique, the background noise could be described by a Rayleigh distribution, a noncentral chi-distribution or the positive half of a Gaussian distribution. In particular, the noise characteristics of SoS-reconstructed multichannel acquisitions (with k-space-based parallel imaging or without parallel imaging) differ substantially from those with image-domain parallel imaging or SMF combination. These effects must be taken into account if mean values or standard deviations of background noise are employed for data analysis such as determination of local noise levels. Assuming a Rayleigh distribution as in conventional MR images or a noncentral chi-distribution for all multichannel acquisitions is invalid in general and may lead to erroneous estimates of the signal-to-noise ratio or the contrast-to-noise ratio.
Magnetic Resonance in Medicine | 2009
José G. Raya; Olaf Dietrich; Annie Horng; Jürgen Weber; Maximilian F. Reiser; Christian Glaser
T2 relaxation time is a promising MRI parameter for the detection of cartilage degeneration in osteoarthritis. However, the accuracy and precision of the measured T2 may be substantially impaired by the low signal‐to‐noise ratio of images available from clinical examinations. The purpose of this work was to assess the accuracy and precision of the traditional fit methods (linear least‐squares regression and nonlinear fit to an exponential) and two new noise‐corrected fit methods: fit to a noise‐corrected exponential and fit of the noise‐corrected squared signal intensity to an exponential. Accuracy and precision have been analyzed in simulations, in phantom measurements, and in seven repetitive acquisitions of the patellar cartilage in six healthy volunteers. Traditional fit methods lead to a poor accuracy for low T2, with overestimations of the exact T2 up to 500%. The noise‐corrected fit methods demonstrate a very good accuracy for all T2 values and signal‐to‐noise ratio. Even more, the fit to a noise‐corrected exponential results in precisions comparable to the best achievable precisions (Cramér‐Rao lower bound). For in vivo images, the traditional fit methods considerably overestimate T2 near the bone‐cartilage interface. Therefore, using an adequate fit method may substantially improve the sensitivity of T2 to detect pathology in cartilage and change in T2 follow‐up examinations. Magn Reson Med, 2010.
Radiology | 2012
José G. Raya; Annie Horng; Olaf Dietrich; Svetlana Krasnokutsky; Luis S. Beltran; Pippa Storey; Maximilian F. Reiser; Michael P. Recht; Daniel K. Sodickson; Christian Glaser
PURPOSE To investigate technical feasibility, test-retest reproducibility, and the ability to differentiate healthy subjects from subjects with osteoarthritis (OA) with diffusion-tensor (DT) imaging parameters and T2 relaxation time. MATERIALS AND METHODS This study was approved by the institutional review board and was HIPAA compliant. All subjects provided written informed consent. DT imaging parameters and T2 (resolution=0.6×0.6×2 mm) of patellar cartilage were measured at 7.0 T in 16 healthy volunteers and 10 patients with OA with subtle inhomogeneous signal intensity but no signs of cartilage erosion at clinical magnetic resonance (MR) imaging. Ten volunteers were imaged twice to determine test-retest reproducibility. After cartilage segmentation, maps of mean apparent diffusion coefficient (ADC), fractional anisotropy (FA), and T2 relaxation time were calculated. Differences for ADC, FA, and T2 between the healthy and OA populations were assessed with nonparametric tests. The ability of each MR imaging parameter to help discriminate healthy subjects from subjects with OA was assessed by using receiver operating characteristic curve analysis. RESULTS Test-retest reproducibility was better than 10% for mean ADC (8.1%), FA (9.7%), and T2 (5.9%). Mean ADC and FA differed significantly (P<.01) between the OA and healthy populations, but T2 did not. For ADC, the optimal threshold to differentiate both populations was 1.2×10(-3) mm2/sec, achieving specificity of 1.0 (16 of 16) and sensitivity of 0.80 (eight of 10). For FA, the optimal threshold was 0.25, yielding specificity of 0.88 (14 of 16) and sensitivity of 0.80 (eight of 10). T2 showed poor differentiation between groups (optimal threshold=22.9 msec, specificity=0.69 [11 of 16], sensitivity=0.60 [six of 10]). CONCLUSION In vivo DT imaging of patellar cartilage is feasible, has good test-retest reproducibility, and may be accurate in discriminating healthy subjects from subjects with OA. ADC and FA are two promising biomarkers for early OA.
Magnetic Resonance in Medicine | 2015
Mike Notohamiprodjo; Hersh Chandarana; Artem Mikheev; Henry Rusinek; John Grinstead; Thorsten Feiweier; José G. Raya; Vivian S. Lee; Eric E. Sigmund
We used a combined intravoxel incoherent motion–diffusion tensor imaging (IVIM‐DTI) methodology to distinguish structural from flow effects on renal diffusion anisotropy.
Annals of Biomedical Engineering | 2010
David M. Pierce; Werner Trobin; José G. Raya; Siegfried Trattnig; Horst Bischof; Christian Glaser; Gerhard A. Holzapfel
Accurate techniques for simulating the deformation of soft biological tissues are an increasingly valuable tool in many areas of biomechanical analysis and medical image computing. To model the complex morphology and response of articular cartilage, a hyperviscoelastic (dispersed) fiber-reinforced constitutive model is employed to complete two specimen-specific finite element (FE) simulations of an indentation experiment, with and without considering fiber dispersion. Ultra-high field Diffusion Tensor Magnetic Resonance Imaging (17.6 T DT-MRI) is performed on a specimen of human articular cartilage before and after indentation to ∼20% compression. Based on this DT-MRI data, we detail a novel FE approach to determine the geometry (edge detection from first eigenvalue), the meshing (semi-automated smoothing of DTI measurement voxels), and the fiber structural input (estimated principal fiber direction and dispersion). The global and fiber fabric deformations of both the un-dispersed and dispersed fiber models provide a satisfactory match to that estimated experimentally. In both simulations, the fiber fabric in the superficial and middle zones becomes more aligned with the articular surface, although the dispersed model appears more consistent with the literature. In the future, a multi-disciplinary combination of DT-MRI and numerical simulation will allow the functional state of articular cartilage to be determined in vivo.
Journal of Magnetic Resonance Imaging | 2006
José G. Raya; Olaf Dietrich; Maximilian F. Reiser; Andrea Baur-Melnyk
Diffusion‐weighted imaging (DWI) is an MRI technique that is sensitive to random water movements at spatial scales far below typical MRI voxel dimensions. DWI is a valuable tool for the diagnoses of diseases that involve alterations in water mobility. In the spine, DWI has proven to be a highly useful method for the differential diagnosis of benign and malignant compression fractures. In these pathologies, the microscopic structure of bone marrow is altered in a very different ways, leading to different water mobility, which can be depicted by DWI. Most of the pulse sequences developed for MRI can be adapted for DWI. However, these DWI‐adapted sequences are frequently affected by artifacts, mostly caused by physiological motion. Therefore, the introduction of additional correction techniques, or even the development of new sequences is necessary. The first part of this article describes the principles of DWI and the sequences used for DWI of the spine: spin echo (SE), turbo spin echo (TSE), single‐shot echo planar imaging (EPI), and steady‐state free precession (SSFP) sequences. In the second part, clinical applications of DWI of the spinal bone marrow are extensively discussed. J. Magn. Reson. Imaging 2006.
Investigative Radiology | 2010
Paola Coan; Fabian Bamberg; Paul C. Diemoz; Alberto Bravin; Kirsten Timpert; Elisabeth Mützel; José G. Raya; Silvia Adam-Neumair; Maximilian F. Reiser; Christian Glaser
Objectives:Early research in phase-contrast imaging indicates that substantial higher soft-tissue contrast resolution can be obtained compared with conventional absorption radiography. In the present feasibility study, we used the phase contrast analyzer-based technique in tomographic mode to investigate whether structural cartilage matrix properties can be depicted in an ex vivo set-up and whether high resolution CT-phase contrast imaging may enable differentiation of osteoarthritic and intact cartilage matrixes. Material and Methods:Four postmortem osteochondral cylinders (7 mm diameter, 2 osteoarthritic, 2 healthy control samples from 4 human patellae) underwent tomographic phase-contrast analyzer-based imaging at high resolution (voxel size: 83 micron3) at 26 keV (European Synchrotron Radiation Facility, Grenoble, France). From the acquired data volumes, sets of reconstructed sagittal slices were selected at 0.5 mm increments from osteoarthritic and control specimens. Two independent, blinded observers assessed structural characteristics (cartilage thickness, topographic chondrocyte distribution homogeneity, zonal height, and surface damage) and differences between the 2 groups were determined. Results:Phase contrast analyzer-based CT showed excellent depiction of the complete volume and of the 3D architecture of the cartilage in all samples. A distinct zonal pattern in the cartilage matrix could consistently be visualized. The osteoarthritic samples showed significantly lower chondrocyte distribution homogeneity (0% vs. 76% homogeneous, P < 0.001), less chondrocyte alignment (0% vs. 59% fully aligned, P < 0.001), lower height of tangential, transitional, and radial zones (all P < 0.001) and a higher prevalence of superficial cartilage damage (84% vs. 10%, P < 0.001). Conclusions:This first proof-of-concept study demonstrates that high resolution phase contrast CT visualizes structural details in relatively thick ex vivo cartilage samples. Our results suggest that the technique permits differentiation of osteoarthritic and healthy cartilage by enabling assessment of histologic characteristics of cartilage structures.
Journal of Cardiovascular Magnetic Resonance | 2009
Tobias Saam; José G. Raya; Clemens C. Cyran; Katja Bochmann; Georgios Meimarakis; Olaf Dietrich; Dirk A. Clevert; Ute Frey; Chun Yuan; Thomas S. Hatsukami; Abe Werf; Maximilian F. Reiser; Konstantin Nikolaou
BackgroundMost of the carotid plaque MR studies have been performed using black-blood protocols at 1.5 T without parallel imaging techniques. The purpose of this study was to evaluate a multi-sequence, black-blood MR protocol using parallel imaging and a dedicated 4-channel surface coil for vessel wall imaging of the carotid arteries at 3 T.Materials and methods14 healthy volunteers and 14 patients with intimal thickening as proven by duplex ultrasound had their carotid arteries imaged at 3 T using a multi-sequence protocol (time-of-flight MR angiography, pre-contrast T1w-, PDw- and T2w sequences in the volunteers, additional post-contrast T1w- and dynamic contrast enhanced sequences in patients). To assess intrascan reproducibility, 10 volunteers were scanned twice within 2 weeks.ResultsIntrascan reproducibility for quantitative measurements of lumen, wall and outer wall areas was excellent with Intraclass Correlation Coefficients >0.98 and measurement errors of 1.5%, 4.5% and 1.9%, respectively. Patients had larger wall areas than volunteers in both common carotid and internal carotid arteries and smaller lumen areas in internal carotid arteries (p < 0.001). Positive correlations were found between wall area and cardiovascular risk factors such as age, hypertension, coronary heart disease and hypercholesterolemia (Spearmans r = 0.45-0.76, p < 0.05). No significant correlations were found between wall area and body mass index, gender, diabetes or a family history of cardiovascular disease.ConclusionThe findings of this study indicate that high resolution carotid black-blood 3 T MR with parallel imaging is a fast, reproducible and robust method to assess carotid atherosclerotic plaque in vivo and this method is ready to be used in clinical practice.
Radiology | 2013
José G. Raya; Gerd Melkus; Silvia Adam-Neumair; Olaf Dietrich; Elisabeth Mützel; Maximilian F. Reiser; Reinhard Putz; Thorsten Kirsch; Peter M. Jakob; Christian Glaser
PURPOSE To assess the use of diffusion-tensor (DT) imaging of articular cartilage to detect and grade early cartilage damage in human specimens with early signs of cartilage damage. MATERIALS AND METHODS This study was approved by the institutional review board. Forty-three cartilage-on-bone samples drilled from 21 human patellae were examined with 17.6-T magnetic resonance (MR) imaging and a diffusion-weighted spin-echo sequence (spatial resolution, 50 × 100 × 800 μm). Subsequently, samples underwent histologic analysis with safranin O staining. Cartilage damage on safranin O histologic slides was quantified with Osteoarthritis Research Society International (OARSI) grades; grades ranged from 0 (healthy) to 6 (bone remodeling). Maps of longitudinal diffusivity (λ(l)), transverse diffusivity (λ(t)), mean diffusivity (MD), and fractional anisotropy (FA) were calculated. Cartilage was segmented, and region of interest (ROI) analysis was performed and compared with histologic findings. Significant differences in MR parameters between the OARSI groups were assessed with the Tukey test. The value of DT imaging in the diagnosis and grading of cartilage damage was assessed with logistic regression analysis. RESULTS Samples had OARSI grades of 0 (n = 14), 1 (n = 11), 2 (n = 12), 3 (n = 4), and 4 (n = 2). Samples with an OARSI grade greater than 0 had significantly increased λ(l), λ(t), and MD (7%-25% increase) in the superficial cartilage growing deeper into cartilage with increasing OARSI grade. Samples with an OARSI grade greater than 0 showed significantly decreased FA in the deep cartilage (-25% to -35% decrease), suggesting that changes in the collagen architecture may occur early in cartilage degradation. DTI showed excellent performance in the detection of cartilage damage (accuracy, 0.95; 41 of 43 samples) and good performance in the grading of cartilage damage (accuracy, 0.74; 32 of 43 samples). CONCLUSION DT imaging of articular cartilage can enable physicians to detect and grade early cartilage damage.