Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Juarez is active.

Publication


Featured researches published by Jose Juarez.


Oncogene | 1997

Regulation of 92 kDa type IV collagenase expression by the jun aminoterminal kinase- and the extracellular signal-regulated kinase-dependent signaling cascades.

Rebecca Gum; H. Wang; Ernst Lengyel; Jose Juarez; Douglas D. Boyd

The 92 kDa type IV collagenase (MMP-9), which degrades type IV collagen, has been implicated in tissue remodeling. The purpose of the current study was to determine the role of Jun amino-terminal kinase (JNK)- and extracellular signal-regulated kinase- (ERK)-dependent signaling cascades in the regulation of MMP-9 expression. Towards this end, we first determined the transcriptional requirements for MMP-9 promoter activity in a cell line (UM-SCC-1) which is an avid secretor of this collagenase. Transfection of these cells with a CAT reporter driven by progressive 5′ deleted fragments of the MMP-9 promoter indicated the requirement of a region spanning −144 to −73 for optimal promoter activity. DNase I footprinting revealed a protected region of the promoter spanning nucleotides −91 to −68 and containing a consensus AP-1 motif at −79. Mutation of this AP-1 motif practically abolished the activity of the MMP-9 promoter-driven CAT reporter. Mobility shift assays indicated c-Fos and Jun-D bound to this motif and transfection of the cells with a mutated c-Jun, which quenches the function of endogenous Jun and Fos proteins, decreased MMP-9 promoter activity by 80%. UM-SCC-1 cells contained a constitutively activated JNK and the expression of a kinase-deficient JNK1 reduced the activity of a CAT reporter driven either by the MMP-9 promoter or by three tandem AP-1 repeats upstream of a thymidine kinase minimal promoter. Conditioned medium collected from UM-SCC-1 cells transfected with the dominant negative JNK1 expression vector diminished 92 kDa gelatinolysis. Similarly, interfering with MEKK, which lies upstream of JNK1, using a dominant negative expression vector reduced MMP-9 promoter activity over the same concentration range which repressed the AP-1-thymidine kinase CAT reporter construct. UM-SCC-1 cells also contained a constitutively activated ERK1. MMP-9 expression, as determined by CAT assays and by zymography, was reduced by the co-expression of a kinase-deficient ERK1. Interfering with MEK1, which is an upstream activator of ERK1, either with PD 098059, which prevents the activation of MEK1, or with a dominant negative expression construct, reduced 92 kDa gelatinolysis and MMP-9 promoter activity respectively. c-Raf-1 is an upstream activator of MEK1 and a kinase-deficient c-Raf-1 expression construct decreased the activity of a promoter driven by either the MMP-9 promoter or three tandem AP-1 repeats. Conversely, treatment of UM-SCC-1 cells with PMA, which activates c-Raf-1, increased 92 kDa gelatinolysis. These data suggest that MMP-9 expression in UM-SCC-1 cells, is regulated by JNK- and ERK-dependent signaling pathways.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Superoxide dismutase 1 (SOD1) is essential for H2O2-mediated oxidation and inactivation of phosphatases in growth factor signaling

Jose Juarez; Mari Manuia; Mark E. Burnett; Oscar Betancourt; Benoit Boivin; David E. Shaw; Nicholas K. Tonks; Andrew P. Mazar; Fernando Doñate

Superoxide dismutase 1 (SOD1) is an abundant copper/zinc enzyme found in the cytoplasm that converts superoxide into hydrogen peroxide and molecular oxygen. Tetrathiomolybdate (ATN-224) has been recently identified as an inhibitor of SOD1 that attenuates FGF-2- and VEGF-mediated phosphorylation of ERK1/2 in endothelial cells. However, the mechanism for this inhibition was not elucidated. Growth factor (GF) signaling elicits an increase in reactive oxygen species (ROS), which inactivates protein tyrosine phosphatases (PTP) by oxidizing an essential cysteine residue in the active site. ATN-224-mediated inhibition of SOD1 in tumor and endothelial cells prevents the formation of sufficiently high levels of H2O2, resulting in the protection of PTPs from H2O2-mediated oxidation. This, in turn, leads to the inhibition of EGF-, IGF-1-, and FGF-2-mediated phosphorylation of ERK1/2. Pretreatment with exogenous H2O2 or with the phosphatase inhibitor vanadate abrogates the inhibition of ERK1/2 phosphorylation induced by ATN-224 or SOD1 siRNA treatments. Furthermore, ATN-224-mediated SOD1 inhibition causes the down-regulation of the PDGF receptor. SOD1 inhibition also increases the steady-state levels of superoxide, which induces protein oxidation in A431 cells but, surprisingly, does not oxidize phosphatases. Thus, SOD1 inhibition in A431 tumor cells results in both prooxidant effects caused by the increase in the levels of superoxide and antioxidant effects caused by lowering the levels of H2O2. These results identify SOD1 as a master regulator of GF signaling and as a therapeutic target for the inhibition of angiogenesis and tumor growth.


Nature | 2016

Overcoming EGFR(T790M) and EGFR(C797S) resistance with mutant-selective allosteric inhibitors

Yong Jia; Cai-Hong Yun; Eunyoung Park; Dalia Ercan; Mari Manuia; Jose Juarez; Chunxiao Xu; Kevin Rhee; Ting Chen; Haikuo Zhang; Sangeetha Palakurthi; Jaebong Jang; Gerald Lelais; Michael DiDonato; Badry Bursulaya; Pierre-Yves Michellys; Robert Epple; Thomas H. Marsilje; Matthew McNeill; Wenshuo Lu; Jennifer L. Harris; Steven Bender; Kwok-Kin Wong; Pasi A. Jänne; Michael J. Eck

EGFR tyrosine kinase inhibitors (TKIs) gefitinib, erlotinib and afatinib are approved treatments for non-small cell lung cancers harboring activating mutations in the EGFR kinase1,2, but resistance arises rapidly, most frequently due to the secondary T790M mutation within the ATP-site of the receptor.3,4 Recently developed mutant-selective irreversible inhibitors are highly active against the T790M mutant5,6, but their efficacy can be compromised by acquired mutation of C797, the cysteine residue with which they form a key covalent bond7. All current EGFR TKIs target the ATP-site of the kinase, highlighting the need for therapeutic agents with alternate mechanisms of action. Here we describe rational discovery of EAI045, an allosteric inhibitor that targets selected drug-resistant EGFR mutants but spares the wild type receptor. A crystal structure shows that the compound binds an allosteric site created by the displacement of the regulatory C-helix in an inactive conformation of the kinase. The compound inhibits L858R/T790M-mutant EGFR with low-nanomolar potency in biochemical assays, but as a single agent is not effective in blocking EGFR-driven proliferation in cells due to differential potency on the two subunits of the dimeric receptor, which interact in an asymmetric manner in the active state8. We observe dramatic synergy of EAI045 with cetuximab, an antibody therapeutic that blocks EGFR dimerization9,10, rendering the kinase uniformly susceptible to the allosteric agent. EAI045 in combination with cetuximab is effective in mouse models of lung cancer driven by L858R/T790M EGFR and by L858R/T790M/C797S EGFR, a mutant that is resistant to all currently available EGFR TKIs. More generally, our findings illustrate the utility of purposefully targeting allosteric sites to obtain mutant-selective inhibitors.


Clinical Cancer Research | 2006

Copper Binding by Tetrathiomolybdate Attenuates Angiogenesis and Tumor Cell Proliferation through the Inhibition of Superoxide Dismutase 1

Jose Juarez; Oscar Betancourt; Steven Robert Pirie-Shepherd; Xiaojun Guan; Melissa L. P. Price; David E. Shaw; Andrew P. Mazar; Fernando Donate

Purpose: A second-generation tetrathiomolybdate analogue (ATN-224; choline tetrathiomolybdate), which selectively binds copper with high affinity, is currently completing two phase I clinical trials in patients with advanced solid and advanced hematologic malignancies. However, there is very little information about the mechanism of action of ATN-224 at the molecular level. Experimental Design: The effects of ATN-224 on endothelial and tumor cell growth were evaluated in cell culture experiments in vitro. The antiangiogenic activity of ATN-224 was investigated using the Matrigel plug model of angiogenesis. Results: ATN-224 inhibits superoxide dismutase 1 (SOD1) in tumor and endothelial cells. The inhibition of SOD1 leads to inhibition of endothelial cell proliferation in vitro and attenuation of angiogenesis in vivo. The inhibition of SOD1 activity in endothelial cells is dose and time dependent and leads to an increase in the steady-state levels of superoxide anions, resulting in the inhibition of extracellular signal-regulated kinase phosphorylation without apparent induction of apoptosis. In contrast, the inhibition of SOD1 in tumor cells leads to the induction of apoptosis. The effects of ATN-224 on endothelial and tumor cells could be substantially reversed using Mn(III)tetrakis(4-benzoic acid)porphyrin chloride, a catalytic small-molecule SOD mimetic. Conclusions: These data provide a distinct molecular target for the activity of ATN-224 and provide validation for SOD1 as a target for the inhibition of angiogenesis and tumor growth.


Proceedings of the National Academy of Sciences of the United States of America | 2002

The antiangiogenic activity of cleaved high molecular weight kininogen is mediated through binding to endothelial cell tropomyosin

Jing Chuan Zhang; Fernando Donate; Xiaoping Qi; Nicholas P. Ziats; Jose Juarez; Andrew P. Mazar; Yuan Ping Pang; Keith R. McCrae

Conformationally altered proteins and protein fragments derived from the extracellular matrix and hemostatic system may function as naturally occurring angiogenesis inhibitors. One example of such a protein is cleaved high molecular weight kininogen (HKa). HKa inhibits angiogenesis by inducing apoptosis of proliferating endothelial cells, effects mediated largely by HKa domain 5. However, the mechanisms underlying the antiangiogenic activity of HKa have not been characterized, and its binding site on proliferating endothelial cells has not been defined. Here, we report that the induction of endothelial cell apoptosis by HKa, as well as the antiangiogenic activity of HKa in the chick chorioallantoic membrane, was inhibited completely by antitropomyosin monoclonal antibody TM-311. TM-311 also blocked the high-affinity Zn2+-dependent binding of HKa to both purified tropomyosin and proliferating endothelial cells. Confocal microscopic analysis of endothelial cells stained with monoclonal antibody TM-311, as well as biotin labeling of cell surface proteins on intact endothelial cells, revealed that tropomyosin exposure was enhanced on the surface of proliferating cells. These studies demonstrate that the antiangiogenic effects of HKa depend on high-affinity binding to endothelial cell tropomyosin.


Journal of Cellular Biochemistry | 1996

Regulation of urokinase‐type plasminogen activator expression by an ERK1‐dependent signaling pathway in a squamous cell carcinoma cell line

Ernst Lengyel; Rebecca Gum; Evan Stepp; Jose Juarez; Heng Wang; Douglas D. Boyd

The urokinase‐type plasminogen activator contributes to tissue remodeling by controlling the synthesis of the extracellular matrix‐degrading plasmin. We undertook a study to determine the role of the extracellular signal‐regulated kinases (ERKs) in the regulation of urokinase‐type plasminogen activator expression in a squamous cell carcinoma cell line (UM‐SCC‐1) that contains a transcriptionally activated urokinase‐type plasminogen activator gene. Transient transfection studies using a CAT reporter driven by the urokinase‐type plasminogen activator promoter, which had progressive 5′ deletions or which had been point‐mutated, indicated the requirement of binding sites for AP‐1 (‐1967) and PEA3 (‐1973) for its maximal activation. Expression of a mutant jun protein, which lacks the transactivation domain, caused a dose‐dependent repression of a CAT reporter driven by either the urokinase‐type plasminogen activator promoter or three tandem AP‐1 repeats upstream of a thymidine kinase minimal promoter indicating the importance of AP‐1‐binding transcription factor(s) in the regulation of urokinase‐type plasminogen activator synthesis. Mobility shift assays with UM‐SCC‐1 nuclear extract revealed binding of fos and junD proteins to an oligonucleotide spanning the AP‐1 site at ‐1967. In‐gel kinase assays indicated the constitutive activation of ERK1, which regulates fos synthesis via phosphorylation of p621CT, but not ERK2, in UM‐SCC‐1 cells. Moreover, the expression of a dominant‐negative ERK1, but not ERK2, repressed urokinase‐type plasminogen activator promoter activity. Similarly, interfering with the function of the c‐raf serine‐threonine kinase, which lies upstream of ERK1, by the expression of a kinase‐inactive c‐raf repressed the activity of a CAT reporter driven by either the urokinase‐type plasminogen activator promotor or tandem AP‐1 repeats. These data suggest that urokinase‐type plasminogen activator expression in UM‐SCC‐1 cells is regulated partly by an ERK1, but not ERK2, ‐dependent signaling pathway.


Cancer Research | 2004

Peptides Derived from the Histidine-Proline Domain of the Histidine-Proline-Rich Glycoprotein Bind to Tropomyosin and Have Antiangiogenic and Antitumor Activities

Fernando Donate; Jose Juarez; Xiaojun Guan; Natalya V. Shipulina; Ziva Tel-Tsur; David E. Shaw; William T. Morgan; Andrew P. Mazar

The antiangiogenic activity of the multidomain plasma protein histidine-proline-rich glycoprotein (HPRG) is localized to its histidine-proline–rich (H/P) domain and has recently been shown to be mediated, at least partially, through binding to cell-surface tropomyosin in fibroblast growth factor-2-activated endothelial cells (X. Guan et al., Thromb Haemost, in press). HPRG and its H/P domain, but not the other domains of HPRG, bind specifically and with high affinity to tropomyosin. In this study, we characterize the interaction of the H/P domain with tropomyosin and delineate the region within the H/P domain responsible for that interaction. The H/P domain of HPRG consists mostly of repetitions of the consensus sequence [H/P][H/P]PHG. Applying an in vitro tropomyosin binding assay, we demonstrate that the synthetic peptide HHPHG binds to tropomyosin in vitro and inhibits angiogenesis and tumor growth in vivo. The affinity for tropomyosin increases exponentially upon multimerization of the HHPHG sequence, with a concurrent increase in antiangiogenic activity. Specifically, the tetramer (HHPHG)4 has significant antiangiogenic activity in the Matrigel plug model (IC50 ∼600 nm) and antitumor effects in two syngeneic mouse tumor models. Thus, we show that a 16-mer peptide analogue mimics the antiangiogenic activity of intact HPRG and is also able to inhibit tumor growth, suggesting that cell surface tropomyosin may represent a novel antiangiogenic target for the treatment of cancer.


Thrombosis and Haemostasis | 2004

Histidine-Proline Rich Glycoprotein (HPRG) binds and transduces anti-angiogenic signals through cell surface tropomyosin on endothelial cells

Xiaojun Guan; Jose Juarez; Xiaoping Qi; Natalya V. Shipulina; David E. Shaw; William T. Morgan; Keith R. McCrae; Andrew P. Mazar; Fernando Donate

The anti-angiogenic properties of the histidine-proline-rich (H/P) domain of HPRG have recently been described (Juarez JC, et al. Cancer Research 2002; 62: 5344-50). However, the binding site that mediates these properties is unknown. HPRG is evolutionarily, functionally and structurally related to cleaved high molecular weight kininogen (HKa), an anti-angiogenic polypeptide that stimulates apoptosis of proliferating endothelial cells through binding to cell-surface tropomyosin (Zhang J-C, et al. Proc Natl Acad Sci USA 2002; 99: 12224-9). In this study, we demonstrate that HPRG binds with high affinity to FGF-2-stimulated human umbilical vein endothelial cells (HUVEC) and immobilized tropomyosin in a Zn2+ or pH-dependent manner, and that this interaction is mediated by the H/P domain of HPRG. At least two binding sites for HPRG, tropomyosin and heparan sulfate proteoglycans (HSPs), were identified on the surface of FGF-2-activated endothelial cells. Translocation of tropomyosin to the surface of HUVEC occurred in response to FGF-2, and the anti-angiogenic activity of HPRG in a Matrigel plug model was partially inhibited by soluble tropomyosin. These results suggest that HPRG binds to endothelial cell surface tropomyosin which at least partially mediates the antiangiogenic effects of HPRG.


Oncogene | 1998

Stimulation of urokinase-type plasminogen activator receptor expression by PMA requires JNK1-dependent and -independent signaling modules

Rebecca Gum; Jose Juarez; Heike Allgayer; A. Mazar; Y. Wang; Douglas D. Boyd

The urokinase-type plasminogen activator receptor (u-PAR) has been implicated in tumor progression, and previous studies have shown that the expression of this gene is strongly up-regulated by PMA. Although the signaling mechanism by which PMA modulates u-PAR expression is not known, the effect of this phorbol ester on the expression of other genes has been ascribed to activation of the c-Raf-1-ERK signaling pathway. However, in the current study we examined an alternate possibility that the inductive effect of PMA on u-PAR expression also required a JNK1-dependent signaling cascade usually associated with stress-inducing stimuli. PMA treatment of the u-PAR-deficient OVCAR-3 ovarian cancer cells, which contain low JNK activities, resulted in a rapid (5 min) increase in JNK activity. Maximal JNK activity (12-fold induction) occurred after 30 min; this preceding the earliest detected rise in u-PAR protein (2 h). Dose-response studies with PMA also indicated that the increased JNK activity was tightly correlated with elevated u-PAR protein levels. The stimulation of u-PAR promoter activity by PMA required an intact upstream AP-1 motif (−184) and in PMA-treated cells this motif was bound with c-Jun as indicated from mobility shift assays. PMA up-regulated the c-Jun trans acting activity as indicated by the higher activity of a GAL4-regulated luciferase reporter in phorbol-ester-treated cells co-transfected with an expression vector encoding the c-Jun transactivation domain fused to the GAL4 DNA-binding domain. The ability of PMA to stimulate u-PAR promoter activity was effectively titrated out by the co-expression of either a kinase-defective JNK1 or a dominant negative MEKK1 the latter being an upstream activator of JNK1. Conversely, u-PAR promoter activity was stimulated by the co-expression of a constitutively active MEKK1 and this induction was antagonized by the inclusion of the kinase-defective JNK1 plasmid. We also determined the biological significance of the JNK1-dependent signaling cascade in regulating u-PAR promoter activity by c-Ha-ras since this oncogene is activated and/or overexpressed in a variety of tumors including ovarian cancer. Transfection of an activated c-Ha-ras into OVCAR-3 cells stimulated u-PAR promoter activity over 20-fold and this could be countered by the individual expression of dominant negative expression constructs to Rac-1, MEKK1 or JNK1. Taken together, these data suggest that the PMA- or c-Ha-Ras-dependent stimulation of u-PAR gene expression requires a JNK1-dependent signaling module and that, at least for PMA, the concurrent stimulation of a JNK1-independent signaling module is also required. Thus, caution should be exercised in invoking linear signaling modules to account for the regulation of inducible gene expression.


Bioorganic & Medicinal Chemistry Letters | 2003

Design of novel N-(2,4-dioxo-1,2,3,4-tetrahydro-thieno[3,2-d]pyrimidin-7-yl)-guanidines as thymidine phosphorylase inhibitors, and flexible docking to a homology model

Melissa L. P. Price; Wayne C. Guida; Tara E. Jackson; Jason Nydick; Patricia L. Gladstone; Jose Juarez; Fernando Donate; Robert J. Ternansky

A novel class of thymidine phosphorylase (TP) inhibitors has been designed based on analogy to the enzyme substrate as well as known inhibitors. Flexible docking studies, using a homology model of human TP, of the designed N-(2,4-dioxo-1,2,3,4-tetrahydro-thieno[3,2-d]pyrimidin-7-yl)-guanidines as well as their synthetic precursors provide insight into the observed experimental trends in binding affinity.

Collaboration


Dive into the Jose Juarez's collaboration.

Top Co-Authors

Avatar

Fernando Donate

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas D. Boyd

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Graham Parry

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca Gum

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew Mazar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Xiaojun Guan

Scripps Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge