Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José L. Campos is active.

Publication


Featured researches published by José L. Campos.


Molecular Biology and Evolution | 2014

The Relation between Recombination Rate and Patterns of Molecular Evolution and Variation in Drosophila melanogaster

José L. Campos; Daniel L. Halligan; Penelope R. Haddrill; Brian Charlesworth

Genetic recombination associated with sexual reproduction increases the efficiency of natural selection by reducing the strength of Hill–Robertson interference. Such interference can be caused either by selective sweeps of positively selected alleles or by background selection (BGS) against deleterious mutations. Its consequences can be studied by comparing patterns of molecular evolution and variation in genomic regions with different rates of crossing over. We carried out a comprehensive study of the benefits of recombination in Drosophila melanogaster, both by contrasting five independent genomic regions that lack crossing over with the rest of the genome and by comparing regions with different rates of crossing over, using data on DNA sequence polymorphisms from an African population that is geographically close to the putatively ancestral population for the species, and on sequence divergence from a related species. We observed reductions in sequence diversity in noncrossover (NC) regions that are inconsistent with the effects of hard selective sweeps in the absence of recombination. Overall, the observed patterns suggest that the recombination rate experienced by a gene is positively related to an increase in the efficiency of both positive and purifying selection. The results are consistent with a BGS model with interference among selected sites in NC regions, and joint effects of BGS, selective sweeps, and a past population expansion on variability in regions of the genome that experience crossing over. In such crossover regions, the X chromosome exhibits a higher rate of adaptive protein sequence evolution than the autosomes, implying a Faster-X effect.


Genome Biology and Evolution | 2012

Molecular Evolution in Nonrecombining Regions of the Drosophila melanogaster Genome

José L. Campos; Brian Charlesworth; Penelope R. Haddrill

We study the evolutionary effects of reduced recombination on the Drosophila melanogaster genome, analyzing more than 200 new genes that lack crossing-over and employing a novel orthology search among species of the melanogaster subgroup. These genes are located in the heterochromatin of chromosomes other than the dot (fourth) chromosome. Noncrossover regions of the genome all exhibited an elevated level of evolutionary divergence from D. yakuba at nonsynonymous sites, lower codon usage bias, lower GC content in coding and noncoding regions, and longer introns. Levels of gene expression are similar for genes in regions with and without crossing-over, which rules out the possibility that the reduced level of adaptation that we detect is caused by relaxed selection due to lower levels of gene expression in the heterochromatin. The patterns observed are consistent with a reduction in the efficacy of selection in all regions of the genome of D. melanogaster that lack crossing-over, as a result of the effects of enhanced Hill–Robertson interference. However, we also detected differences among nonrecombining locations: The X chromosome seems to exhibit the weakest effects, whereas the fourth chromosome and the heterochromatic genes on the autosomes located most proximal to the centromere showed the largest effects. However, signatures of selection on both nonsynonymous mutations and on codon usage persist in all heterochromatic regions.


Annual Review of Genetics | 2014

The Relations Between Recombination Rate and Patterns of Molecular Variation and Evolution in Drosophila

Brian Charlesworth; José L. Campos

Genetic recombination affects levels of variability and the efficacy of selection because natural selection acting at one site affects evolutionary processes at linked sites. The variation in local recombination rates across the Drosophila genome provides excellent material for testing hypotheses concerning the evolutionary consequences of recombination. The current state of knowledge from studies of Drosophila genomics and population genetics is reviewed here. Selection at linked sites has influenced the relations between recombination rates and patterns of molecular variation and evolution, such that higher rates of recombination are associated with both higher levels of variability and a greater efficacy of selection. It seems likely that background selection against deleterious mutations is a major factor contributing to these patterns in genome regions in which crossing over is rare or absent, whereas selective sweeps of positively selected mutations probably play an important role in regions with crossing over.


Molecular Biology and Evolution | 2013

Codon usage bias and effective population sizes on the X chromosome versus the autosomes in Drosophila melanogaster

José L. Campos; Kai Zeng; Darren J. Parker; Brian Charlesworth; Penelope R. Haddrill

Codon usage bias (CUB) in Drosophila is higher for X-linked genes than for autosomal genes. One possible explanation is that the higher effective recombination rate for genes on the X chromosome compared with the autosomes reduces their susceptibility to Hill–Robertson effects, and thus enhances the efficacy of selection on codon usage. The genome sequence of D. melanogaster was used to test this hypothesis. Contrary to expectation, it was found that, after correcting for the effective recombination rate, CUB remained higher on the X than on the autosomes. In contrast, an analysis of polymorphism data from a Rwandan population showed that mean nucleotide site diversity at 4-fold degenerate sites for genes on the X is approximately three-quarters of the autosomal value after correcting for the effective recombination rate, compared with approximate equality before correction. In addition, these data show that selection for preferred versus unpreferred synonymous variants is stronger on the X than the autosomes, which accounts for the higher CUB of genes on the X chromosome. This difference in the strength of selection does not appear to reflect the effects of dominance of mutations affecting codon usage, differences in gene expression levels between X and autosomes, or differences in mutational bias. Its cause therefore remains unexplained. The stronger selection on CUB on the X chromosome leads to a lower rate of synonymous site divergence compared with the autosomes; this will cause a stronger upward bias for X than A in estimates of the proportion of nonsynonymous mutations fixed by positive selection, for methods based on the McDonald–Kreitman test.


Molecular Biology and Evolution | 2016

Adaptive evolution is substantially impeded by Hill-Robertson interference in Drosophila

David Castellano; Marta Coronado-Zamora; José L. Campos; Antonio Barbadilla; Adam Eyre-Walker

Hill–Robertson interference (HRi) is expected to reduce the efficiency of natural selection when two or more linked selected sites do not segregate freely, but no attempt has been done so far to quantify the overall impact of HRi on the rate of adaptive evolution for any given genome. In this work, we estimate how much HRi impedes the rate of adaptive evolution in the coding genome of Drosophila melanogaster. We compiled a data set of 6,141 autosomal protein-coding genes from Drosophila, from which polymorphism levels in D. melanogaster and divergence out to D. yakuba were estimated. The rate of adaptive evolution was calculated using a derivative of the McDonald–Kreitman test that controls for slightly deleterious mutations. We find that the rate of adaptive amino acid substitution at a given position of the genome is positively correlated to both the rate of recombination and the mutation rate, and negatively correlated to the gene density of the region. These correlations are robust to controlling for each other, for synonymous codon bias and for gene functions related to immune response and testes. We show that HRi diminishes the rate of adaptive evolution by approximately 27%. Interestingly, genes with low mutation rates embedded in gene poor regions lose approximately 17% of their adaptive substitutions whereas genes with high mutation rates embedded in gene rich regions lose approximately 60%. We conclude that HRi hampers the rate of adaptive evolution in Drosophila and that the variation in recombination, mutation, and gene density along the genome affects the HRi effect.


Genome Biology and Evolution | 2014

Family size evolution in Drosophila chemosensory gene families: a comparative analysis with a critical appraisal of methods

Francisca C. Almeida; Alejandro Sánchez-Gracia; José L. Campos; Julio Rozas

Gene turnover rates and the evolution of gene family sizes are important aspects of genome evolution. Here, we use curated sequence data of the major chemosensory gene families from Drosophila—the gustatory receptor, odorant receptor, ionotropic receptor, and odorant-binding protein families—to conduct a comparative analysis among families, exploring different methods to estimate gene birth and death rates, including an ad hoc simulation study. Remarkably, we found that the state-of-the-art methods may produce very different rate estimates, which may lead to disparate conclusions regarding the evolution of chemosensory gene family sizes in Drosophila. Among biological factors, we found that a peculiarity of D. sechellia’s gene turnover rates was a major source of bias in global estimates, whereas gene conversion had negligible effects for the families analyzed herein. Turnover rates vary considerably among families, subfamilies, and ortholog groups although all analyzed families were quite dynamic in terms of gene turnover. Computer simulations showed that the methods that use ortholog group information appear to be the most accurate for the Drosophila chemosensory families. Most importantly, these results reveal the potential of rate heterogeneity among lineages to severely bias some turnover rate estimation methods and the need of further evaluating the performance of these methods in a more diverse sampling of gene families and phylogenetic contexts. Using branch-specific codon substitution models, we find further evidence of positive selection in recently duplicated genes, which attests to a nonneutral aspect of the gene birth-and-death process.


Genetics | 2016

Inferring the frequency spectrum of derived variants to quantify adaptive molecular evolution in protein-coding genes of Drosophila melanogaster

Peter D. Keightley; José L. Campos; Tom R. Booker; Brian Charlesworth

Many approaches for inferring adaptive molecular evolution analyze the unfolded site frequency spectrum (SFS), a vector of counts of sites with different numbers of copies of derived alleles in a sample of alleles from a population. Accurate inference of the high-copy-number elements of the SFS is difficult, however, because of misassignment of alleles as derived vs. ancestral. This is a known problem with parsimony using outgroup species. Here we show that the problem is particularly serious if there is variation in the substitution rate among sites brought about by variation in selective constraint levels. We present a new method for inferring the SFS using one or two outgroups that attempts to overcome the problem of misassignment. We show that two outgroups are required for accurate estimation of the SFS if there is substantial variation in selective constraints, which is expected to be the case for nonsynonymous sites in protein-coding genes. We apply the method to estimate unfolded SFSs for synonymous and nonsynonymous sites in a population of Drosophila melanogaster from phase 2 of the Drosophila Population Genomics Project. We use the unfolded spectra to estimate the frequency and strength of advantageous and deleterious mutations and estimate that ∼50% of amino acid substitutions are positively selected but that <0.5% of new amino acid mutations are beneficial, with a scaled selection strength of Nes ≈ 12.


Molecular Ecology | 2016

RAD mapping reveals an evolving, polymorphic and fuzzy boundary of a plant pseudoautosomal region

S. Qiu; R. Bergero; S. Guirao-Rico; José L. Campos; T. Cezard; Karim Gharbi; Deborah Charlesworth

How loss of genetic exchanges (recombination) evolves between sex chromosomes is a long‐standing question. Suppressed recombination may evolve when a sexually antagonistic (SA) polymorphism occurs in a partially sex‐linked ‘pseudoautosomal’ region (or ‘PAR’), maintaining allele frequency differences between the two sexes, and creating selection for closer linkage with the fully sex‐linked region of the Y chromosome in XY systems, or the W in ZW sex chromosome systems. Most evidence consistent with the SA polymorphism hypothesis is currently indirect, and more studies of the genetics and population genetics of PAR genes are clearly needed. The sex chromosomes of the plant Silene latifolia are suitable for such studies, as they evolved recently and the loss of recombination could still be ongoing. Here, we used RAD sequencing to genetically map sequences in this plant, which has a large genome (c. 3 gigabases) and no available whole‐genome sequence. We mapped 83 genes on the sex chromosomes, and comparative mapping in the related species S. vulgaris supports previous evidence for additions to an ancestral PAR and identified at least 12 PAR genes. We describe evidence that recombination rates have been reduced in meiosis of both sexes, and differences in recombination between S. latifolia families suggest ongoing recombination suppression. Large allele frequency differences between the sexes were found at several loci closely linked to the PAR boundary, and genes in different regions of the PAR showed striking sequence diversity patterns that help illuminate the evolution of the PAR.


Genome Biology and Evolution | 2014

Faster-X effects in two Drosophila lineages

Victoria Ávila; Sophie Marion de Procé; José L. Campos; Helen Borthwick; Brian Charlesworth; Andrea J. Betancourt

Under certain circumstances, X-linked loci are expected to experience more adaptive substitutions than similar autosomal loci. To look for evidence of faster-X evolution, we analyzed the evolutionary rates of coding sequences in two sets of Drosophila species, the melanogaster and pseudoobscura clades, using whole-genome sequences. One of these, the pseudoobscura clade, contains a centric fusion between the ancestral X chromosome and the autosomal arm homologous to 3L in D. melanogaster. This offers an opportunity to study the same loci in both an X-linked and an autosomal context, and to compare these loci with those that are only X-linked or only autosomal. We therefore investigated these clades for evidence of faster-X evolution with respect to nonsynonymous substitutions, finding mixed results. Overall, there was consistent evidence for a faster-X effect in the melanogaster clade, but not in the pseudoobscura clade, except for the comparison between D. pseudoobscura and its close relative, Drosophila persimilis. An analysis of polymorphism data on a set of genes from D. pseudoobscura that evolve rapidly with respect to their protein sequences revealed no evidence for a faster-X effect with respect to adaptive protein sequence evolution; their rapid evolution is instead largely attributable to lower selective constraints. Faster-X evolution in the melanogaster clade was not related to male-biased gene expression; surprisingly, however, female-biased genes showed evidence for faster-X effects, perhaps due to their sexually antagonistic effects in males.


Biology Letters | 2015

The effects of sex-biased gene expression and X-linkage on rates of adaptive protein sequence evolution in Drosophila

Victoria Ávila; José L. Campos; Brian Charlesworth

A faster rate of adaptive evolution of X-linked genes compared with autosomal genes may be caused by the fixation of new recessive or partially recessive advantageous mutations (the Faster-X effect). This effect is expected to be largest for mutations that affect only male fitness and absent for mutations that affect only female fitness. We tested these predictions in Drosophila melanogaster by using genes with different levels of sex-biased expression and by estimating the extent of adaptive evolution of non-synonymous mutations from polymorphism and divergence data. We detected both a Faster-X effect and an effect of male-biased gene expression. There was no evidence for a strong association between the two effects—modest levels of male-biased gene expression increased the rate of adaptive evolution on both the autosomes and the X chromosome, but a Faster-X effect occurred for both unbiased genes and female-biased genes. The rate of genetic recombination did not influence the magnitude of the Faster-X effect, ruling out the possibility that it reflects less Hill–Robertson interference for X-linked genes.

Collaboration


Dive into the José L. Campos's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kai Zeng

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Barbadilla

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar

David Castellano

Autonomous University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge