Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose L. Luque-Garcia is active.

Publication


Featured researches published by Jose L. Luque-Garcia.


Journal of Clinical Investigation | 2011

Mycobacteria release active membrane vesicles that modulate immune responses in a TLR2-dependent manner in mice

Rafael Prados-Rosales; Andres Baena; Luis R. Martinez; Jose L. Luque-Garcia; Rainer Kalscheuer; Usha Veeraraghavan; Carmen Cámara; Joshua D. Nosanchuk; Gurdyal S. Besra; Bing Chen; Juan Jimenez; Aharona Glatman-Freedman; William R. Jacobs; Steven A. Porcelli; Arturo Casadevall

Bacteria naturally release membrane vesicles (MVs) under a variety of growth environments. Their production is associated with virulence due to their capacity to concentrate toxins and immunomodulatory molecules. In this report, we show that the 2 medically important species of mycobacteria, Mycobacterium tuberculosis and Mycobacterium bovis bacille Calmette-Guérin, release MVs when growing in both liquid culture and within murine phagocytic cells in vitro and in vivo. We documented MV production in a variety of virulent and nonvirulent mycobacterial species, indicating that release of MVs is a property conserved among mycobacterial species. Extensive proteomic analysis revealed that only MVs from the virulent strains contained TLR2 lipoprotein agonists. The interaction of MVs with macrophages isolated from mice stimulated the release of cytokines and chemokines in a TLR2-dependent fashion, and infusion of MVs into mouse lungs elicited a florid inflammatory response in WT but not TLR2-deficient mice. When MVs were administered to mice before M. tuberculosis pulmonary infection, an accelerated local inflammatory response with increased bacterial replication was seen in the lungs and spleens. Our results provide strong evidence that actively released mycobacterial vesicles are a delivery mechanism for immunologically active molecules that contribute to mycobacterial virulence. These findings may open up new horizons for understanding the pathogenesis of tuberculosis and developing vaccines.


Journal of Chromatography A | 2007

Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry.

Jose L. Luque-Garcia; Thomas A. Neubert

Abstract In this article, we present an overview of the different strategies for sample preparation for identification by mass spectrometry (MS) of biomarkers from serum and/or plasma. We consider the effects of the variables involved in sample collection, handling and storage, and describe different approaches for removal of high abundance proteins and serum/plasma fractionation. We review the advantages and disadvantages of such techniques as centrifugal ultrafiltration, different formats for solid phase extraction, organic solvent extraction, gel and capillary electrophoresis, and liquid chromatography. We also discuss a variety of current proteomic methods and their main applications for biomarker-related studies.


Proteomics | 2010

Differential protein expression on the cell surface of colorectal cancer cells associated to tumor metastasis

Jose L. Luque-Garcia; Jorge Luis Martínez-Torrecuadrada; Carolina Epifano; Marta Cañamero; Ingrid Babel; J. Ignacio Casal

Progression to metastasis is the critical point in colorectal cancer (CRC) survival. However, the proteome associated to CRC metastasis is very poorly understood at the moment. In this study, we used stable isotope labeling by amino acids in cell culture to compare two CRC cell lines: KM12C and KM12SM, representing poorly versus highly metastatic potential, to find and quantify the differences in protein expression, mostly at the cell surface level. After biotinylation followed by affinity purification, membrane proteins were separated by SDS‐PAGE and analyzed using nanoflow LC‐ESI‐LTQ. A total of 291 membrane and membrane‐associated proteins were identified with a p value<0.01, from which 60 proteins were found to be differentially expressed by more than 1.5‐fold. We identified a number of cell signaling, CDs, integrins and other cell adhesion molecules (cadherin 17, junction plakoglobin (JUP)) among the most deregulated proteins. They were validated by Western blot, confocal microscopy and flow cytometry analysis. Immunohistochemical analysis of paired tumoral samples confirmed that these differentially expressed proteins were also altered in human tumoral tissues. A good correlation with a major abundance in late tumor stages was observed for JUP and 17‐β‐hydroxysteroid dehydrogenase type 8 (HSD17B8). Moreover, the combined increase in JUP, occludin and F11 receptor expression together with cadherin 17 expression could suggest a reversion to a more epithelial phenotype in highly metastatic cells. Relevant changes were observed also at the metabolic level in the pentose phosphate pathway and several amino acid transporters. In summary, the identified proteins provide us with a better understanding of the events involved in liver colonization and CRC metastasis.


Journal of Proteomics | 2014

Characterization of protective extracellular membrane-derived vesicles produced by Streptococcus pneumoniae

Alfonso Olaya-Abril; Rafael Prados-Rosales; Michael J. McConnell; Reyes Martı́n-Peña; José A. González-Reyes; Irene Jiménez-Munguía; Lidia Gómez-Gascón; Javier Fernández; Jose L. Luque-Garcia; Carlos García-Lidón; Héctor Estévez; Jerónimo Pachón; Ignacio Obando; Arturo Casadevall; Liise Anne Pirofski; Manuel J. Rodríguez-Ortega

UNLABELLED Extracellular vesicles are produced by many pathogenic microorganisms and have varied functions that include secretion and release of microbial factors, which contribute to virulence. Very little is known about vesicle production by Gram-positive bacteria, as well as their biogenesis and release mechanisms. In this work, we demonstrate the active production of vesicles by Streptococcus pneumoniae from the plasma membrane, rather than being a product from cell lysis. We biochemically characterized them by proteomics and fatty acid analysis, showing that these vesicles and the plasma membrane resemble in essential aspects, but have some differences: vesicles are more enriched in lipoproteins and short-chain fatty acids. We also demonstrate that these vesicles act as carriers of surface proteins and virulence factors. They are also highly immunoreactive against human sera and induce immune responses that protect against infection. Overall, this work provides insights into the biology of this important Gram-positive human pathogen and the role of extracellular vesicles in clinical applications. BIOLOGICAL SIGNIFICANCE Pneumococcus is one of the leading causes of bacterial pneumonia worldwide in children and the elderly, being responsible for high morbidity and mortality rates in developing countries. The augment of pneumococcal disease in developed countries has raised major public health concern, since the difficulties to treat these infections due to increasing antibiotic resistance. Vaccination is still the best way to combat pneumococcal infections. One of the mechanisms that bacterial pathogens use to combat the defense responses of invaded hosts is the production and release of extracellular vesicles derived from the outer surface. Little is known about this phenomenon in Gram-positives. We show that pneumococcus produces membrane-derived vesicles particularly enriched in lipoproteins. We also show the utility of pneumococcal vesicles as a new type of vaccine, as they induce protection in immunized mice against infection with a virulent strain. This work will contribute to understand the role of these structures in important biological processes such as host-pathogen interactions and prevention of human disease.


Journal of Proteomics | 2013

Identification of mitochondrial dysfunction in Hutchinson-Gilford progeria syndrome through use of stable isotope labeling with amino acids in cell culture.

José Rivera-Torres; Rebeca Acín-Pérez; Pablo Cabezas-Sanchez; Fernando G. Osorio; Cristina González-Gómez; Diego Megias; Carmen Cámara; Carlos López-Otín; José Antonio Enríquez; Jose L. Luque-Garcia; Vicente Andrés

UNLABELLED Hutchinson-Gilford progeria syndrome (HGPS) is a rare segmental premature aging disorder that recapitulates some biological and physical aspects of physiological aging. The disease is caused by a sporadic dominant mutation in the LMNA gene that leads to the expression of progerin, a mutant form of lamin A that lacks 50 amino acids and retains a toxic farnesyl modification in its carboxy-terminus. However, the mechanisms underlying cellular damage and senescence and accelerated aging in HGPS are incompletely understood. Here, we analyzed fibroblasts from healthy subjects and HGPS patients using SILAC (stable isotope labeling with amino acids in cell culture). We found in HGPS cells a marked downregulation of mitochondrial oxidative phosphorylation proteins accompanied by mitochondrial dysfunction, a process thought to provoke broad organ decline during normal aging. We also found mitochondrial dysfunction in fibroblasts from adult progeroid mice expressing progerin (Lmna(G609G/G609G) knock-in mice) or prelamin A (Zmpste24-null mice). Analysis of tissues from these mouse models revealed that the damaging effect of these proteins on mitochondrial function is time- and dose-dependent. Mitochondrial alterations were not observed in the brain, a tissue with extremely low progerin expression that seems to be unaffected in HGPS. Remarkably, mitochondrial function was restored in progeroid mouse fibroblasts treated with the isoprenylation inhibitors FTI-277 or pravastatin plus zoledronate, which are being tested in HGPS clinical trials. Our results suggest that mitochondrial dysfunction contributes to premature organ decline and aging in HGPS. Beyond its effects on progeria, prelamin A and progerin may also contribute to mitochondrial dysfunction and organ damage during normal aging, since these proteins are expressed in cells and tissues from non-HGPS individuals, most prominently at advanced ages. BIOLOGICAL SIGNIFICANCE Mutations in LMNA or defective processing of prelamin A causes premature aging disorders, including Hutchinson-Gilford progeria syndrome (HGPS). Most HGPS patients carry in heterozygosis a de-novo point mutation (c.1824C>T: GGC>GGT; p.G608G) which causes the expression of the lamin A mutant protein called progerin. Despite the importance of progerin and prelamin A in accelerated aging, the underlying molecular mechanisms remain largely unknown. To tackle this question, we compared the proteome of skin-derived dermal fibroblast from HGPS patients and age-matched controls using quantitative stable isotope labeling with amino acids in cell culture (SILAC). Our results show a pronounced down-regulation of several components of the mitochondrial ATPase complex accompanied by up-regulation of some glycolytic enzymes. Accordingly, functional studies demonstrated mitochondrial dysfunction in HGPS fibroblasts. Moreover, our expression and functional studies using cellular and animal models confirmed that mitochondrial dysfunction is a feature of progeria which develops in a time- and dose-dependent manner. Finally, we demonstrate improved mitochondrial function in progeroid mouse cells treated with a combination of statins and aminobisphosphonates, two drugs that are being evaluated in ongoing HGPS clinical trials. Although further studies are needed to unravel the mechanisms through which progerin and prelamin A provoke mitochondrial abnormalities, our findings may pave the way to improved treatments of HGPS. These studies may also improve our knowledge of the mechanisms leading to mitochondrial dysfunction during normal aging, since both progerin and prelamin A have been found to accumulate during normal aging.


Molecular Microbiology | 2014

Extracellular vesicles produced by the Gram‐positive bacterium Bacillus subtilis are disrupted by the lipopeptide surfactin

Lisa Brown; Anne Kessler; Pablo Cabezas-Sanchez; Jose L. Luque-Garcia; Arturo Casadevall

Previously, extracellular vesicle production in Gram‐positive bacteria was dismissed due to the absence of an outer membrane, where Gram‐negative vesicles originate, and the difficulty in envisioning how such a process could occur through the cell wall. However, recent work has shown that Gram‐positive bacteria produce extracellular vesicles and that the vesicles are biologically active. In this study, we show that Bacillus subtilis produces extracellular vesicles similar in size and morphology to other bacteria, characterized vesicles using a variety of techniques, provide evidence that these vesicles are actively produced by cells, show differences in vesicle production between strains, and identified a mechanism for such differences based on vesicle disruption. We found that in wild strains of B. subtilis, surfactin disrupted vesicles while in laboratory strains harbouring a mutation in the gene sfp, vesicles accumulated in the culture supernatant. Surfactin not only lysed B. subtilis vesicles, but also vesicles from Bacillus anthracis, indicating a mechanism that crossed species boundaries. To our knowledge, this is the first time a gene and a mechanism has been identified in the active disruption of extracellular vesicles and subsequent release of vesicular cargo in Gram‐positive bacteria. We also identify a new mechanism of action for surfactin.


Molecular & Cellular Proteomics | 2008

Analysis of Electroblotted Proteins by Mass Spectrometry: Protein Identification after Western Blotting

Jose L. Luque-Garcia; Ge Zhou; Daniel S. Spellman; Tung-Tien Sun; Thomas A. Neubert

We describe a new approach for the identification and characterization by mass spectrometry of proteins that have been electroblotted onto nitrocellulose. Using this method (Blotting and Removal of Nitrocellulose (BARN)), proteins can be analyzed either as intact proteins for molecular weight determination or as peptides generated by on-membrane proteolysis. Acetone is used to dissolve the nitrocellulose and to precipitate the adsorbed proteins/peptides, thus removing the nitrocellulose which can interfere with MS analysis. This method offers improved protein coverage, especially for membrane proteins, such as uroplakins, because the extraction step after in-gel digestion is avoided. Moreover, removal of nitrocellulose from the sample solution allows sample analysis by both MALDI- and (LC) ESI-based mass spectrometers. Finally, we demonstrate the utility of BARN for the direct identification of soluble and membrane proteins after Western blotting, obtaining comparable or better results than with in-gel digestion.


Colloids and Surfaces B: Biointerfaces | 2014

Effects of chitosan-stabilized selenium nanoparticles on cell proliferation, apoptosis and cell cycle pattern in HepG2 cells: comparison with other selenospecies.

Héctor Estévez; J. Carlos Garcia-Lidon; Jose L. Luque-Garcia; Carmen Cámara

Selenium is an essential element that plays an important role in many biological functions. Many studies have reported the potential beneficial effects of Se intake for cancer therapy and prevention, which are not only dose-dependent but also closely related to the properties of specific selenospecies. Selenium nanoparticles are considered a novel selenium compound with excellent antioxidant properties; however, little is known about the properties of selenium nanoparticles in comparison to other well-studied selenospecies. Here, we combined different independent bioanalytical approaches to carry out a comparison between the effects of selenium nanoparticles and other selenocompounds (inorganic and organic selenospecies) using an in-vitro model. The bioanalytical characterization of different parameters such as cell proliferation, apoptosis and cell cycle pattern on HepG2 cells has shown the unique properties of this relatively novel compound that support and complete prior evidences for future applications as chemotherapeutic agent.


Proteomics | 2009

The Fusarium oxysporum cell wall proteome under adhesion‐inducing conditions

Rafael Prados-Rosales; Jose L. Luque-Garcia; Raquel Martínez-López; Concha Gil; Antonio Di Pietro

Fusarium oxysporum is a soilborne fungus that causes vascular wilt disease on a wide range of crops. During initial stages of infection, fungal hyphae attach firmly to roots, penetrate the cortex and colonize xylem vessels. The mechanisms underlying root attachment are poorly understood, although it was previously shown that this process depends on Fmk1, a mitogen‐activated protein kinase orthologous to the mating/filamentation mitogen‐activated protein kinases Fus3/Kss1 in yeast. We investigated the hypothesis that root adhesion is mediated by fungal cell wall proteins (CWPs). To characterize the cell wall subproteome of F. oxysporum, we performed LC‐MS/MS analysis of tryptic digests of purified cell walls obtained from adhesion‐inducing conditions, identifying a total of 174 proteins, 19 of which contain a predicted signal peptide and 10 of which have a predicted glycosylphosphatidyl‐inositol motif. 2‐D DIGE was used to compare four different fractions of CWPs extracted from hyphae of the wild‐type strain and the Δfmk1 mutant. We detected 18 proteins differing significantly in abundance between the two strains. Differential expression of five of these proteins was confirmed by RT‐PCR analysis. A significant fraction of the subproteome lacked functional information, highlighting the limitations in the current understanding of CWPs in F. oxysporum.


Eukaryotic Cell | 2014

Interaction of Cryptococcus neoformans Extracellular Vesicles with the Cell Wall

Julie M. Wolf; Javier Espadas-Moreno; Jose L. Luque-Garcia; Arturo Casadevall

ABSTRACT Cryptococcus neoformans produces extracellular vesicles containing a variety of cargo, including virulence factors. To become extracellular, these vesicles not only must be released from the plasma membrane but also must pass through the dense matrix of the cell wall. The greatest unknown in the area of fungal vesicles is the mechanism by which these vesicles are released to the extracellular space given the presence of the fungal cell wall. Here we used electron microscopy techniques to image the interactions of vesicles with the cell wall. Our goal was to define the ultrastructural morphology of the process to gain insights into the mechanisms involved. We describe single and multiple vesicle-leaving events, which we hypothesized were due to plasma membrane and multivesicular body vesicle origins, respectively. We further utilized melanized cells to “trap” vesicles and visualize those passing through the cell wall. Vesicle size differed depending on whether vesicles left the cytoplasm in single versus multiple release events. Furthermore, we analyzed different vesicle populations for vesicle dimensions and protein composition. Proteomic analysis tripled the number of proteins known to be associated with vesicles. Despite separation of vesicles into batches differing in size, we did not identify major differences in protein composition. In summary, our results indicate that vesicles are generated by more than one mechanism, that vesicles exit the cell by traversing the cell wall, and that vesicle populations exist as a continuum with regard to size and protein composition.

Collaboration


Dive into the Jose L. Luque-Garcia's collaboration.

Top Co-Authors

Avatar

Carmen Cámara

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pablo Cabezas-Sanchez

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Estefanía García-Calvo

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Yolanda Madrid

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Rafael Prados-Rosales

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana Cuello

Complutense University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge