Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose L. Mendoza-Cortes is active.

Publication


Featured researches published by Jose L. Mendoza-Cortes.


Journal of Physical Chemistry A | 2010

Adsorption Mechanism and Uptake of Methane in Covalent Organic Frameworks: Theory and Experiment

Jose L. Mendoza-Cortes; Sang Soo Han; Hiroyasu Furukawa; Omar M. Yaghi; William A. Goddard

We determined the methane (CH(4)) uptake (at 298 K and 1 to 100 bar pressure) for a variety of covalent organic frameworks (COFs), including both two-dimensional (COF-1, COF-5, COF-6, COF-8, and COF-10) and three-dimensional (COF-102, COF-103, COF-105, and COF-108) systems. For all COFs, the CH(4) uptake was predicted from grand canonical Monte Carlo (GCMC) simulations based on force fields (FF) developed to fit accurate quantum mechanics (QM) [second order Møller-Plesset (MP2) perturbation theory using doubly polarized quadruple-ζ (QZVPP) basis sets]. This FF was validated by comparison with the equation of state for CH(4) and by comparison with the experimental uptake isotherms at 298 K (reported here for COF-5 and COF-8), which agrees well (within 2% for 1-100 bar) with the GCMC simulations. From our simulations we have been able to observe, for the first time, multilayer formation coexisting with a pore filling mechanism. The best COF in terms of total volume of CH(4) per unit volume COF absorbent is COF-1, which can store 195 v/v at 298 K and 30 bar, exceeding the U.S. Department of Energy target for CH(4) storage of 180 v/v at 298 K and 35 bar. The best COFs on a delivery amount basis (volume adsorbed from 5 to 100 bar) are COF-102 and COF-103 with values of 230 and 234 v(STP: 298 K, 1.01 bar)/v, respectively, making these promising materials for practical methane storage.


Journal of Physical Chemistry Letters | 2012

A Covalent Organic Framework that Exceeds the DOE 2015 Volumetric Target for H2 Uptake at 298 K

Jose L. Mendoza-Cortes; William A. Goddard; Hiroyasu Furukawa; Omar M. Yaghi

Physisorption in porous materials is a promising approach for meeting H2 storage requirements for the transportation industry, because it is both fully reversible and fast at mild conditions. However, most current candidates lead to H2 binding energies that are too weak (leading to volumetric capacity at 298 K of <10 g/L compared to the DOE 2015 Target of 40 g/L). Using accurate quantum mechanical (QM) methods, we studied the H2 binding energy to 48 compounds based on various metalated analogues of five common linkers for covalent organic frameworks (COFs). Considering the first transition row metals (Sc though Cu) plus Pd and Pt, we find that the new COF-301-PdCl2 reaches 60 g total H2/L at 100 bar, which is 1.5 times the DOE 2015 target of 40 g/L and close to the ultimate (2050) target of 70 g/L. The best current materials, MOF-200 and MOF-177, are predicted to store 7.6 g/L (0.54 wt % excess) and 9.6 g/L (0.87 wt % excess), respectively, at 298 K and 100 bar compared with 60 g/L (4.2 wt % excess) for COF-301-PdCl2.


Journal of the American Chemical Society | 2013

Oxygen Atom Transfer and Oxidative Water Incorporation in Cuboidal Mn3MOn Complexes Based on Synthetic, Isotopic Labeling, and Computational Studies

Jacob S. Kanady; Jose L. Mendoza-Cortes; Emily Y. Tsui; Robert J. Nielsen; William A. Goddard; Theodor Agapie

The oxygen-evolving complex (OEC) of photosystem II contains a Mn(4)CaO(n) catalytic site, in which reactivity of bridging oxidos is fundamental to OEC function. We synthesized structurally relevant cuboidal Mn(3)MO(n) complexes (M = Mn, Ca, Sc; n = 3,4) to enable mechanistic studies of reactivity and incorporation of μ(3)-oxido moieties. We found that Mn(IV)(3)CaO(4) and Mn(IV)(3)ScO(4) were unreactive toward trimethylphosphine (PMe(3)). In contrast, our Mn(III)(2)Mn(IV)(2)O(4) cubane reacts with this phosphine within minutes to generate a novel Mn(III)(4)O(3) partial cubane plus Me(3)PO. We used quantum mechanics to investigate the reaction paths for oxygen atom transfer to phosphine from Mn(III)(2)Mn(IV)(2)O(4) and Mn(IV)(3)CaO(4). We found that the most favorable reaction path leads to partial detachment of the CH(3)COO(-) ligand, which is energetically feasible only when Mn(III) is present. Experimentally, the lability of metal-bound acetates is greatest for Mn(III)(2)Mn(IV)(2)O(4). These results indicate that even with a strong oxygen atom acceptor, such as PMe(3), the oxygen atom transfer chemistry from Mn(3)MO(4) cubanes is controlled by ligand lability, with the Mn(IV)(3)CaO(4) OEC model being unreactive. The oxidative oxide incorporation into the partial cubane, Mn(III)(4)O(3), was observed experimentally upon treatment with water, base, and oxidizing equivalents. (18)O-labeling experiments provided mechanistic insight into the position of incorporation in the partial cubane structure, consistent with mechanisms involving migration of oxide moieties within the cluster but not consistent with selective incorporation at the site available in the starting species. These results support recent proposals for the mechanism of the OEC, involving oxido migration between distinct positions within the cluster.


Journal of Physical Chemistry A | 2011

Design of Covalent Organic Frameworks for Methane Storage

Jose L. Mendoza-Cortes; Tod A. Pascal; William A. Goddard

We designed 14 new covalent organic frameworks (COFs), which are expected to adsorb large amounts of methane (CH(4)) at 298 K and up to 300 bar. We have calculated their delivery uptake using grand canonical Monte Carlo (GCMC) simulations. We also report their thermodynamic stability based on 7.5 ns molecular dynamics simulations. Two new frameworks, COF-103-Eth-trans and COF-102-Ant, are found to exceed the DOE target of 180 v(STP)/v at 35 bar for methane storage. Their performance is comparable to the best previously reported materials: PCN-14 and Ni-MOF-74. Our results indicate that using thin vinyl bridging groups aid performance by minimizing the interaction methane-COF at low pressure. This is a new feature that can be used to enhance loading in addition to the common practice of adding extra fused benzene rings. Most importantly, this report shows that pure nonbonding interactions, van der Waals (vdW) and electrostatic forces in light elements (C, O, B, H, and Si), can rival the enhancement in uptake obtained for microporous materials derived from early transition metals.


Journal of Physical Chemistry A | 2012

High H2 Uptake in Li-, Na-, K-Metalated Covalent Organic Frameworks and Metal Organic Frameworks at 298 K

Jose L. Mendoza-Cortes; Sang Soo Han; William A. Goddard

The Yaghi laboratory has developed porous covalent organic frameworks (COFs), COF102, COF103, and COF202, and metal-organic frameworks (MOFs), MOF177, MOF180, MOF200, MOF205, and MOF210, with ultrahigh porosity and outstanding H(2) storage properties at 77 K. Using grand canonical Monte Carlo (GCMC) simulations with our recently developed first principles based force field (FF) from accurate quantum mechanics (QM), we calculated the molecular hydrogen (H(2)) uptake at 298 K for these systems, including the uptake for Li-, Na-, and K-metalated systems. We report the total, delivery and excess amount in gravimetric and volumetric units for all these compounds. For the gravimetric delivery amount from 1 to 100 bar, we find that eleven of these compounds reach the 2010 DOE target of 4.5 wt % at 298 K. The best of these compounds are MOF200-Li (6.34) and MOF200-Na (5.94), both reaching the 2015 DOE target of 5.5 wt % at 298 K. Among the undoped systems, we find that MOF200 gives a delivery amount as high as 3.24 wt % while MOF210 gives 2.90 wt % both from 1 to 100 bar and 298 K. However, none of these compounds reach the volumetric 2010 DOE target of 28 g H(2)/L. The best volumetric performance is for COF102-Na (24.9), COF102-Li (23.8), COF103-Na (22.8), and COF103-Li (21.7), all using delivery g H(2)/L units for 1-100 bar. These are the highest volumetric molecular hydrogen uptakes for a porous material under these thermodynamic conditions. Thus, one can obtain outstanding H(2) uptakes with Li, Na, and K doping of simple frameworks constructed from simple, cheap organic linkers. We present suggestions for strategies for synthesis of alkali metal-doped MOFs or COFs.


Journal of Computational Chemistry | 2016

Prediction of the Crystal Packing of Di-Tetrazine-Tetroxide (DTTO) Energetic Material

Jose L. Mendoza-Cortes; Qi An; William A. Goddard; Caichao Ye; Sergey V. Zybin

Previous calculations suggested that di‐tetrazine‐tetroxide (DTTO), aka tetrazino‐tetrazine‐tetraoxide, might have a particularly large density (2.3 g/cm3) and high energy release (8.8 kJ/kg), but it has not yet been synthesized successfully. We report here density functional theory (DFT) (M06, B3LYP, and PBE‐ulg) on 20 possible isomers of DTTO. For the two most stable isomers, c1 and c2 we predict the best packings (i.e., polymorphs) among the 10 most common space groups for organic molecular crystal using the Universal force field and Dreiding force field with Monte Carlo sampling. This was followed by DFT calculations at the PBE‐ulg level to optimize the crystal packing. We conclude that the c1 isomer has the P212121 space group with a density of 1.96 g/cm3, while the c2 isomer has the Pbca space group with a density of 1.98 g/cm3. These densities are among the highest of current energetic materials, RDX (1.81 g/cm3) and CL20 (2.01 g/cm3). We observe that the stability of the polymorphs increases with the density while the planarity decreases.


Journal of Chemical Physics | 2018

Dirac cone in two dimensional bilayer graphene by intercalation with V, Nb, and Ta transition metals

Srimanta Pakhira; Kevin P. Lucht; Jose L. Mendoza-Cortes

Bilayer graphene (BLG) is a semiconductor whose band gap and properties can be tuned by various methods such as doping or applying gate voltage. Here, we show how to tune electronic properties of BLG by intercalation of transition metal (TM) atoms between two monolayer graphene (MLG) using a novel dispersion-corrected first-principle density functional theory (DFT) approach. We intercalated V, Nb, and Ta atoms between two MLG. We found that the symmetry, the spin, and the concentration of TM atoms in BLG-intercalated materials are the important parameters to control and to obtain a Dirac cone in their band structures. Our study reveals that the BLG intercalated with one vanadium (V) atom, BLG-1V, has a Dirac cone at the K-point. In all the cases, the present DFT calculations show that the 2pz sub-shells of C atoms in graphene and the 3dyz sub-shells of the TM atoms provide the electron density near the Fermi energy level (EF) which controls the material properties. Thus, we show that out-of-plane atoms can influence in-plane electronic densities in BLG and enumerate the conditions necessary to control the Dirac point. This study offers insight into the physical properties of 2D BLG intercalated materials and presents a new strategy for controlling the electronic properties of BLG through TM intercalation by varying the concentration and spin arrangement of the metals resulting in various conducting properties, which include: metal, semi-metal and semiconducting states.


Journal of the American Chemical Society | 2018

Achieving Fast and Efficient K+ Intercalation on Ultrathin Graphene Electrodes Modified by a Li+ Based Solid-Electrolyte Interphase

Jingshu Hui; Noah B. Schorr; Srimanta Pakhira; Zihan Qu; Jose L. Mendoza-Cortes; Joaquín Rodríguez-López

Advancing beyond Li-ion batteries requires translating the beneficial characteristics of Li+ electrodes to attractive, yet incipient, candidates such as those based on K+ intercalation. Here, we use ultrathin few-layer graphene (FLG) electrodes as a model interface to show a dramatic enhancement of K+ intercalation performance through a simple conditioning of the solid-electrolyte interphase (SEI) in a Li+ containing electrolyte. Unlike the substantial plating occurring in K+ containing electrolytes, we found that a Li+ based SEI enabled efficient K+ intercalation with discrete staging-type phase transitions observed via cyclic voltammetry at scan rates up to 100 mVs-1 and confirmed as ion-intercalation processes through in situ Raman spectroscopy. The resulting interface yielded fast charge-discharge rates up to ∼360C (1C is fully discharge in 1 h) and remarkable long-term cycling stability at 10C for 1000 cycles. This SEI promoted the transport of K+ as verified via mass spectrometric depth profiling. This work introduces a convenient strategy for improving the performance of ion intercalation electrodes toward a practical K-ion battery and FLG electrodes as a powerful analytical platform for evaluating fundamental aspects of ion intercalation.


ACS Nano | 2018

Modulating Electrocatalysis on Graphene Heterostructures: Physically Impermeable Yet Electronically Transparent Electrodes

Jingshu Hui; Srimanta Pakhira; Richa Bhargava; Zachary J. Barton; Xuan Zhou; Adam J. Chinderle; Jose L. Mendoza-Cortes; Joaquín Rodríguez-López

The electronic properties and extreme thinness of graphene make it an attractive platform for exploring electrochemical interactions across dissimilar environments. Here, we report on the systematic tuning of the electrocatalytic activity toward the oxygen reduction reaction (ORR) via heterostructures formed by graphene modified with a metal underlayer and an adlayer consisting of a molecular catalyst. Systematic voltammetric testing and electrochemical imaging of patterned electrodes allowed us to confidently probe modifications on the ORR mechanisms and overpotential. We found that the surface configuration largely determined the ORR mechanism, with adlayers of porphyrin molecular catalysts displaying a higher activity for the 2e- pathway than the bare basal plane of graphene. Surprisingly, however, the underlayer material contributed substantially to lower the activation potential for the ORR in the order Pt > Au > SiO x, strongly suggesting the involvement of the solution-excluded metal on the reaction. Computational investigations suggest that ORR enhancements originate from permeation of metal d-subshell electrons through the graphene layer. In addition, these physically impermeable but electronically transparent electrodes displayed tolerance to cyanide poisoning and stability toward long-term cycling, highlighting graphene as an effective protection layer of noble metal while enabling electrochemical interactions. This work has implications in the mechanistic understanding of 2D materials and core-shell-type heterostructures for electrocatalytic reactions.


ACS Applied Materials & Interfaces | 2018

General Theory of Absorption in Porous Materials: Restricted Multilayer Theory

Alexander A. Aduenko; Andy Murray; Jose L. Mendoza-Cortes

In this article, we present an approach for the generalization of adsorption of light gases in porous materials. This new theory goes beyond Langmuir and Brunauer-Emmett-Teller theories, which are the standard approaches that have a limited application to crystalline porous materials by their unphysical assumptions on the amount of possible adsorption layers. The derivation of a more general equation for any crystalline porous framework is presented, restricted multilayer theory. Our approach allows the determination of gas uptake considering only geometrical constraints of the porous framework and the interaction energy of the guest molecule with the framework. On the basis of this theory, we calculated optimal values for the adsorption enthalpy at different temperatures and pressures. We also present the use of this theory to determine the optimal linker length for a topologically equivalent framework series. We validate this theoretical approach by applying it to metal-organic frameworks (MOFs) and show that it reproduces the experimental results for seven different reported materials. We obtained the universal equation for the optimal linker length, given the topology of a porous framework. This work applied the general equation to MOFs and H2 to create energy-storage materials; however, this theory can be applied to other crystalline porous materials and light gases, which opens the possibility of designing the next generations of energy-storage materials by first considering only the geometrical constraints of the porous materials.

Collaboration


Dive into the Jose L. Mendoza-Cortes's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

William A. Goddard

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Omar M. Yaghi

King Abdulaziz City for Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kevin P. Lucht

Florida State University

View shared research outputs
Top Co-Authors

Avatar

Hiroyasu Furukawa

Lawrence Berkeley National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Sang Soo Han

Korea Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Alexander A. Aduenko

Moscow Institute of Physics and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hani M. El-Kaderi

Virginia Commonwealth University

View shared research outputs
Researchain Logo
Decentralizing Knowledge