Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José L. Revuelta is active.

Publication


Featured researches published by José L. Revuelta.


Applied Microbiology and Biotechnology | 2000

Three biotechnical processes using Ashbya gossypii, Candida famata, or Bacillus subtilis compete with chemical riboflavin production.

K.-P. Stahmann; José L. Revuelta; H. Seulberger

Abstract Chemical riboflavin production, successfully used for decades, is in the course of being replaced by microbial processes. These promise to save half the costs, reduce waste and energy requirements, and use renewable resources like sugar or plant oil. Three microorganisms are currently in use for industrial riboflavin production. The hemiascomycetes Ashbya gossypii, a filamentous fungus, and Candida famata, a yeast, are naturally occurring overproducers of this vitamin. To obtain riboflavin production with the Gram-positive bacterium Bacillus subtilis requires at least the deregulation of purine synthesis and a mutation in a flavokinase/FAD-synthetase. It is common to all three organisms that riboflavin production is recognizable by the yellow color of the colonies. This is an important tool for the screening of improved mutants. Antimetabolites like itaconate, which inhibits the isocitrate lyase in A. gossypii, tubercidin, which inhibits purine biosynthesis in C. famata, or roseoflavin, a structural analog of riboflavin used for B. subtilis, have been applied successfully for mutant selections. The production of riboflavin by the two fungi seems to be limited by precursor supply, as was concluded from feeding and gene-overexpression experiments. Although flux studies in B. subtilis revealed an increase both in maintenance metabolism and in the oxidative part of the pentose phosphate pathway, the major limitation there seems to be the riboflavin pathway. Multiple copies of the rib genes and promoter replacements are necessary to achieve competitive productivity.


Applied and Environmental Microbiology | 2005

Metabolic Engineering of the Purine Pathway for Riboflavin Production in Ashbya gossypii

Alberto Corsín Jiménez; Maria Santos; Markus Pompejus; José L. Revuelta

ABSTRACT Purine nucleotides are essential precursors for living organisms because they are involved in many important processes, such as nucleic acid synthesis, energy supply, and the biosynthesis of several amino acids and vitamins such as riboflavin. GTP is the immediate precursor for riboflavin biosynthesis, and its formation through the purine pathway is subject to several regulatory mechanisms in different steps. Extracellular purines repress the transcription of most genes required for de novo ATP and GTP synthesis. Additionally, three enzymes of the pathway, phosphoribosyl pyrophosphate (PRPP) amidotransferase, adenylosuccinate synthetase, and IMP dehydrogenase, are subject to feedback inhibition by their end products. Here we report the characterization and manipulation of the committed step in the purine pathway of the riboflavin overproducer Ashbya gossypii. We report that phosphoribosylamine biosynthesis in A. gossypii is negatively regulated at the transcriptional level by extracellular adenine. Furthermore, we show that ATP and GTP exert a strong inhibitory effect on the PRPP amidotransferase from A. gossypii. We constitutively overexpressed the AgADE4 gene encoding PRPP amidotransferase in A. gossypii, thereby abolishing the adenine-mediated transcriptional repression. In addition, we replaced the corresponding residues (aspartic acid310, lysine333, and alanine417) that have been described to be important for PRPP amidotransferase feedback inhibition in other organisms by site-directed mutagenesis. With these manipulations, we managed to enhance metabolic flow through the purine pathway and to increase the production of riboflavin in the triple mutant strain 10-fold (228 mg/liter).


Plant Physiology | 2011

Early Transcriptional Defense Responses in Arabidopsis Cell Suspension Culture under High-Light Conditions

Sergio González-Pérez; Jorge Gutiérrez; Francisco García-García; Daniel Osuna; Joaquín Dopazo; Oscar Lorenzo; José L. Revuelta; Juan B. Arellano

The early transcriptional defense responses and reactive oxygen species (ROS) production in Arabidopsis (Arabidopsis thaliana) cell suspension culture (ACSC), containing functional chloroplasts, were examined at high light (HL). The transcriptional analysis revealed that most of the ROS markers identified among the 449 transcripts with significant differential expression were transcripts specifically up-regulated by singlet oxygen (1O2). On the contrary, minimal correlation was established with transcripts specifically up-regulated by superoxide radical or hydrogen peroxide. The transcriptional analysis was supported by fluorescence microscopy experiments. The incubation of ACSC with the 1O2 sensor green reagent and 2′,7′-dichlorofluorescein diacetate showed that the 30-min-HL-treated cultures emitted fluorescence that corresponded with the production of 1O2 but not of hydrogen peroxide. Furthermore, the in vivo photodamage of the D1 protein of photosystem II indicated that the photogeneration of 1O2 took place within the photosystem II reaction center. Functional enrichment analyses identified transcripts that are key components of the ROS signaling transduction pathway in plants as well as others encoding transcription factors that regulate both ROS scavenging and water deficit stress. A meta-analysis examining the transcriptional profiles of mutants and hormone treatments in Arabidopsis showed a high correlation between ACSC at HL and the fluorescent mutant family of Arabidopsis, a producer of 1O2 in plastids. Intriguingly, a high correlation was also observed with ABA deficient1 and more axillary growth4, two mutants with defects in the biosynthesis pathways of two key (apo)carotenoid-derived plant hormones (i.e. abscisic acid and strigolactones, respectively). ACSC has proven to be a valuable system for studying early transcriptional responses to HL stress.


PLOS Genetics | 2009

Genome-wide analysis of factors affecting transcription elongation and DNA repair: a new role for PAF and Ccr4-not in transcription-coupled repair

Hélène Gaillard; Cristina Tous; Javier Botet; Cristina González-Aguilera; María José Quintero; Laia Viladevall; María L. García-Rubio; Alfonso Rodríguez-Gil; Antonio Marín; Joaquín Ariño; José L. Revuelta; Sebastián Chávez; Andrés Aguilera

RNA polymerases frequently deal with a number of obstacles during transcription elongation that need to be removed for transcription resumption. One important type of hindrance consists of DNA lesions, which are removed by transcription-coupled repair (TC-NER), a specific sub-pathway of nucleotide excision repair. To improve our knowledge of transcription elongation and its coupling to TC-NER, we used the yeast library of non-essential knock-out mutations to screen for genes conferring resistance to the transcription-elongation inhibitor mycophenolic acid and the DNA-damaging agent 4-nitroquinoline-N-oxide. Our data provide evidence that subunits of the SAGA and Ccr4-Not complexes, Mediator, Bre1, Bur2, and Fun12 affect transcription elongation to different extents. Given the dependency of TC-NER on RNA Polymerase II transcription and the fact that the few proteins known to be involved in TC-NER are related to transcription, we performed an in-depth TC-NER analysis of a selection of mutants. We found that mutants of the PAF and Ccr4-Not complexes are impaired in TC-NER. This study provides evidence that PAF and Ccr4-Not are required for efficient TC-NER in yeast, unraveling a novel function for these transcription complexes and opening new perspectives for the understanding of TC-NER and its functional interconnection with transcription elongation.


BMC Biotechnology | 2008

Phosphoribosyl pyrophosphate synthetase activity affects growth and riboflavin production in Ashbya gossypii

Alberto Jiménez; Maria A. Santos; José L. Revuelta

BackgroundPhosphoribosyl pyrophosphate (PRPP) is a central compound for cellular metabolism and may be considered as a link between carbon and nitrogen metabolism. PRPP is directly involved in the de novo and salvage biosynthesis of GTP, which is the immediate precursor of riboflavin. The industrial production of this vitamin using the fungus Ashbya gossypii is an important biotechnological process that is strongly influenced by substrate availability.ResultsHere we describe the characterization and manipulation of two genes of A. gossypii encoding PRPP synthetase (AGR371C and AGL080C). We show that the AGR371C and AGL080C gene products participate in PRPP synthesis and exhibit inhibition by ADP. We also observed a major contribution of AGL080C to total PRPP synthetase activity, which was confirmed by an evident growth defect of the Δagl080c strain. Moreover, we report the overexpression of wild-type and mutant deregulated isoforms of Agr371cp and Agl080cp that significantly enhanced the production of riboflavin in the engineered A. gossypii strains.ConclusionIt is shown that alterations in PRPP synthetase activity have pleiotropic effects on the fungal growth pattern and that an increase in PRPP synthetase enzymatic activity can be used to enhance riboflavin production in A. gossypii.


Journal of Biological Chemistry | 1999

Physiological Consequence of Disruption of the VMA1Gene in the Riboflavin Overproducer Ashbya gossypii

Carola Förster; Maria A. Santos; Susanne Ruffert; Reinhard Krämer; José L. Revuelta

The vacuolar ATPase subunit A structural geneVMA1 of the biotechnologically important riboflavin overproducer Ashbya gossypii was cloned and disrupted to prevent riboflavin retention in the vacuolar compartment and to redirect the riboflavin flux into the medium. Cloning was achieved by polymerase chain reaction using oligonucleotide primers derived form conserved sequences of the Vma1 proteins from yeast and filamentous fungi. The deduced polypeptide comprises 617 amino acids with a calculated molecular mass of 67.8 kDa. The deduced amino acid sequence is highly similar to that of the catalytic subunits ofSaccharomyces cerevisiae (67 kDa), Candida tropicalis (67 kDa), and Neurospora crassa (67 kDa) with 89, 87, and 60% identity, respectively, and shows about 25% identity to the β-subunit of the FoF1-ATPase of S. cerevisiae and Schizosaccharomyces pombe. In contrast to S. cerevisiae, however, where disruption of the VMA1 gene was conditionally lethal, and to N. crassa, where viable disruptants could not be isolated, disruption of the VMA1 gene in A. gossypii did not cause a lethal phenotype. Disruption of the AgVMA1 gene led to complete excretion of riboflavin into the medium instead of retention in the vacuolar compartment, as observed in the wild type.


FEBS Letters | 1999

Isocitrate lyase of Ashbya gossypii – transcriptional regulation and peroxisomal localization

Ines Maeting; Georg Schmidt; Hermann Sahm; José L. Revuelta; York-Dieter Stierhof; K.-Peter Stahmann

The isocitrate lyase‐encoding gene AgICL1 from the filamentous hemiascomycete Ashbya gossypii was isolated by heterologous complementation of a Saccharomyces cerevisiae icl1d mutant. The open reading frame of 1680 bp encoded a protein of 560 amino acids with a calculated molecular weight of 62 584. Disruption of the AgICL1 gene led to complete loss of AgIcl1p activity and inability to grow on oleic acid as sole carbon source. Compartmentation of AgIcl1p in peroxisomes was demonstrated both by Percoll density gradient centrifugation and by immunogold labeling of ultrathin sections using specific antibodies. This fitted with the peroxisomal targeting signal AKL predicted from the C‐terminal DNA sequence. Northern blot analysis with mycelium grown on different carbon sources as well as AgICL1 promoter replacement with the constitutive AgTEF promoter revealed a regulation at the transcriptional level. AgICL1 was subject to glucose repression, derepressed by glycerol, partially induced by the C2 compounds ethanol and acetate, and fully induced by soybean oil.


Journal of Biological Chemistry | 1995

The Saccharomyces cerevisiae RIB4 Gene Codes for 6,7-Dimethyl- 8-ribityllumazine Synthase Involved in Riboflavin Biosynthesis MOLECULAR CHARACTERIZATION OF THE GENE AND PURIFICATION OF THE ENCODED PROTEIN

José J. García-Ramírez; Maria A. Santos; José L. Revuelta

6,7-Dimethyl-8-ribityllumazine, the immediate biosynthetic precursor of riboflavin, is synthesized by condensation of 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione with 3,4-dihydroxy-2-butanone 4-phosphate. The gene coding for 6,7-dimethyl-8-ribityllumazine synthase in Saccharomyces cerevisiae (RIB4) has been cloned by functional complementation of a mutant accumulating 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione, which can grow on riboflavin- or diacetyl- but not on 3,4-dihydroxy-2-butanone-supplemented media. Gene disruption of the chromosomal copy of RIB4 led to riboflavin auxotrophy and loss of enzyme activity. Nucleotide sequencing revealed a 169-base pair open reading frame encoding a 18.6-kDa protein. Hybridization analysis indicated that RIB4 is a single copy gene located on the left arm of chromosome XV. Overexpression of the RIB4 coding sequence in yeast cells under the control of the strong TEF1 promoter allowed ready purification of 6,7-dimethyl-8-ribityllumazine synthase to apparent homogeneity by a simple procedure. Initial structural characterization of 6,7-dimethyl-8-ribityllumazine synthase by gel filtration chromatography and both nondenaturing pore limit and SDS-polyacrylamide gel electrophoresis showed that the enzyme forms a pentamer of identical 16.8-kDa subunits. The derived amino acid sequence of RIB4 shows extensive homology to the sequences of the β subunits of riboflavin synthase from Bacillus subtilis and other prokaryotes.


Applied and Environmental Microbiology | 2006

Purine Biosynthesis, Riboflavin Production, and Trophic-Phase Span Are Controlled by a Myb-Related Transcription Factor in the Fungus Ashbya gossypii

Laura Mateos; Alberto Corsín Jiménez; José L. Revuelta; Maria Santos

ABSTRACT Ashbya gossypii is a natural riboflavin overproducer used in the industrial production of the vitamin. We have isolated an insertional mutant exhibiting higher levels of riboflavin production than the wild type. DNA analysis of the targeted locus in the mutant strain revealed that a syntenic homolog of the Saccharomyces cerevisiae BAS1 gene, a member of the Myb family of transcription factors, was inactivated. Directed gene disruption of AgBAS1 confirmed the phenotype observed for the insertional mutant, and the Δbas1 mutant also showed auxotrophy for adenine and several growth defects, such as a delay in the germination of the spores and an abnormally prolonged trophic phase. Additionally, we demonstrate that the DNA-binding domain of AgBas1p is able to bind to the Bas1-binding motifs in the AgADE4 promoter; we also show a clear nuclear localization of a green fluorescent protein-Bas1 fusion protein. Real-time quantitative PCR analyses comparing the wild type and the Δbas1 mutant revealed that AgBAS1 was responsible for the adenine-mediated regulation of the purine and glycine pathways, since the transcription of the ADE4 and SHM2 genes was virtually abolished in the Δbas1 mutant. Furthermore, the transcription of ADE4 and SHM2 in the Δbas1 mutant did not diminish during the transition from the trophic to the productive phase did not diminish, in contrast to what occurred in the wild-type strain. A C-terminal deletion in the AgBAS1 gene, comprising a hypothetical regulatory domain, caused constitutive activation of the purine and glycine pathways, enhanced riboflavin overproduction, and prolonged the trophic phase. Taking these results together, we propose that in A. gossypii, AgBAS1 is an important transcription factor that is involved in the regulation of different physiological processes, such as purine and glycine biosynthesis, riboflavin overproduction, and growth.


Biochemical Journal | 2003

Disruption of the SHM2 gene, encoding one of two serine hydroxymethyltransferase isoenzymes, reduces the flux from glycine to serine in Ashbya gossypii

Christina Schlüpen; Maria A. Santos; Ulrike Weber; Albert A. de Graaf; José L. Revuelta; K.-Peter Stahmann

Riboflavin overproduction in the ascomycete Ashbya gossypii is limited by glycine, a precursor of purine biosynthesis, and therefore an indicator of glycine metabolism. Disruption of the SHM 2 gene, encoding a serine hydroxymethyltransferase, resulted in a significant increase in riboflavin productivity. Determination of the enzymes specific activity revealed a reduction from 3 m-units/mg of protein to 0.5 m-unit/mg protein. The remaining activity was due to an isoenzyme encoded by SHM 1, which is probably mitochondrial. A hypothesis proposed to account for the enhanced riboflavin overproduction of SHM 2-disrupted mutants was that the flux from glycine to serine was reduced, thus leading to an elevated supply with the riboflavin precursor glycine. Evidence for the correctness of that hypothesis was obtained from (13)C-labelling experiments. When 500 microM 99% [1-(13)C]threonine was fed, more than 50% of the label was detected in C-1 of glycine resulting from threonine aldolase activity. More than 30% labelling determined in C-1 of serine can be explained by serine synthesis via serine hydroxymethyltransferase. Knockout of SHM 1 had no detectable effect on serine labelling, but disruption of SHM 2 led to a decrease in serine (2-5%) and an increase in glycine (59-67%) labelling, indicating a changed carbon flux.

Collaboration


Dive into the José L. Revuelta's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto Corsín Jiménez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Javier Botet

University of Salamanca

View shared research outputs
Top Co-Authors

Avatar

Juan B. Arellano

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Pesquera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mónica Balsera

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge