Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José L. Zafra is active.

Publication


Featured researches published by José L. Zafra.


Journal of the American Chemical Society | 2012

Kinetically Blocked Stable Heptazethrene and Octazethrene: Closed-Shell or Open-Shell in the Ground State?

Yuan Li; WeeKuan Heng; Byungsun Lee; Naoki Aratani; José L. Zafra; Nina Bao; Richmond Lee; Youngmo Sung; Zhe Sun; Kuo-Wei Huang; Richard D. Webster; Juan T. López Navarrete; Dongho Kim; Atsuhiro Osuka; Juan Casado; Jun Ding; Jishan Wu

Polycyclic aromatic hydrocarbons with an open-shell singlet biradical ground state are of fundamental interest and have potential applications in materials science. However, the inherent high reactivity makes their synthesis and characterization very challenging. In this work, a convenient synthetic route was developed to synthesize two kinetically blocked heptazethrene (HZ-TIPS) and octazethrene (OZ-TIPS) compounds with good stability. Their ground-state electronic structures were systematically investigated by a combination of different experimental methods, including steady-state and transient absorption spectroscopy, variable temperature NMR, electron spin resonance (ESR), superconducting quantum interfering device (SQUID), FT Raman, and X-ray crystallographic analysis, assisted by unrestricted symmetry-broken density functional theory (DFT) calculations. All these demonstrated that the heptazethrene derivative HZ-TIPS has a closed-shell ground state while its octazethrene analogue OZ-TIPS with a smaller energy gap exists as an open-shell singlet biradical with a large measured biradical character (y = 0.56). Large two-photon absorption (TPA) cross sections (σ((2))) were determined for HZ-TIPS (σ((2))(max) = 920 GM at 1250 nm) and OZ-TIPS (σ((2))(max) = 1200 GM at 1250 nm). In addition, HZ-TIPS and OZ-TIPS show a closely stacked 1D polymer chain in single crystals.


Journal of the American Chemical Society | 2012

Stable Tetrabenzo-Chichibabin’s Hydrocarbons: Tunable Ground State and Unusual Transition between Their Closed-Shell and Open-Shell Resonance Forms

Zebing Zeng; Young Mo Sung; Nina Bao; Davin Tan; Richmond Lee; José L. Zafra; Byung Sun Lee; Masatoshi Ishida; Jun Ding; Juan T. López Navarrete; Yuan Li; Wangdong Zeng; Dongho Kim; Kuo-Wei Huang; Richard D. Webster; Juan Casado; Jishan Wu

Stable open-shell polycyclic aromatic hydrocarbons (PAHs) are of fundamental interest due to their unique electronic, optical, and magnetic properties and promising applications in materials sciences. Chichibabins hydrocarbon as a classical open-shell PAH has been investigated for a long time. However, most of the studies are complicated by their inherent high reactivity. In this work, two new stable benzannulated Chichibabins hydrocarbons 1-CS and 2-OS were prepared, and their electronic structure and geometry in the ground state were studied by various experiments (steady-state and transient absorption spectra, NMR, electron spin resonance (ESR), superconducting quantum interference device (SQUID), FT Raman, X-ray crystallographic etc.) and density function theory (DFT) calculations. 1-CS and 2-OS exhibited tunable ground states, with a closed-shell quinoidal structure for 1-CS and an open-shell biradical form for 2-OS. Their corresponding excited-state forms 1-OS and 2-CS were also chemically approached and showed different decay processes. The biradical 1-OS displayed an unusually slow decay to the ground state (1-CS) due to a large energy barrier (95 ± 2.5 kJ/mol) arising from severe steric hindrance during the transition from an orthogonal biradical form to a butterfly-like quinoidal form. The quick transition from the quinoidal 2-CS (excited state) to the orthogonal biradicaloid 2-OS (ground state) happened during the attempted synthesis of 2-CS. Compounds 1-CS and 2-OS can be oxidized into stable dications by FeCl(3) and/or concentrated H(2)SO(4). The open-shell 2-OS also exhibited a large two-photon absorption (TPA) cross section (760 GM at 1200 nm).


Journal of the American Chemical Society | 2013

Pushing extended p-quinodimethanes to the limit: Stable tetracyano-oligo(N-annulated perylene)quinodimethanes with tunable ground states

Zebing Zeng; Masatoshi Ishida; José L. Zafra; Xiaojian Zhu; Young Mo Sung; Nina Bao; Richard D. Webster; Byung Sun Lee; Run-Wei Li; Wangdong Zeng; Yuan Li; Chunyan Chi; Juan T. López Navarrete; Jun Ding; Juan Casado; Dongho Kim; Jishan Wu

p-Quinodimethane (p-QDM) is a fundamental building block for the design of π-conjugated systems with low band gap and open-shell biradical character. However, synthesis of extended p-QDMs has usually suffered from their intrinsic high reactivity and poor solubility. In this work, benzannulation together with terminal cyano-substitution was demonstrated to be an efficient approach for the synthesis of a series of soluble and stable tetracyano-oligo(N-annulated perylene)quinodimethanes nPer-CN (n = 1-6), with the longest molecule having 12 para-linked benzenoid rings! The geometry and electronic structures of these oligomers were investigated by steady-state and transient absorption spectroscopy, nuclear magnetic resonance, electron spin resonance, superconducting quantum interference device, and FT Raman spectroscopy assisted by density functional theory calculations. They showed tunable ground states, varying from a closed-shell quinoidal structure for monomer, to a singlet biradical for dimer, trimer, and tetramer, and to a triplet biradical for pentamer and hexamer. Large two-photon absorption cross-section values were observed in the near-infrared range, which also exhibited a clear chain-length dependence.


Nature Chemistry | 2016

Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals

Gabriel E. Rudebusch; José L. Zafra; Kjell Jorner; Kotaro Fukuda; Jonathan L. Marshall; Iratxe Arrechea-Marcos; Guzmán L. Espejo; Rocío Ponce Ortiz; Carlos J. Gómez-García; Lev N. Zakharov; Masayoshi Nakano; Henrik Ottosson; Juan Casado; Michael M. Haley

The consequence of unpaired electrons in organic molecules has fascinated and confounded chemists for over a century. The study of open-shell molecules has been rekindled in recent years as new synthetic methods, improved spectroscopic techniques and powerful computational tools have been brought to bear on this field. Nonetheless, it is the intrinsic instability of the biradical species that limits the practicality of this research. Here we report the synthesis and characterization of a molecule based on the diindeno[b,i]anthracene framework that exhibits pronounced open-shell character yet possesses remarkable stability. The synthetic route is rapid, efficient and possible on the gram scale. The molecular structure was confirmed through single-crystal X-ray diffraction. From variable-temperature Raman spectroscopy and magnetic susceptibility measurements a thermally accessible triplet excited state was found. Organic field-effect transistor device data show an ambipolar performance with balanced electron and hole mobilities. Our results demonstrate the rational design and synthesis of an air- and temperature-stable biradical compound.


Angewandte Chemie | 2013

Tetracyanoquaterrylene and Tetracyanohexarylenequinodimethanes with Tunable Ground States and Strong Near‐Infrared Absorption

Zebing Zeng; Sangsu Lee; José L. Zafra; Masatoshi Ishida; Xiaojian Zhu; Zhe Sun; Yong Ni; Richard D. Webster; Run-Wei Li; Juan T. López Navarrete; Chunyan Chi; Jun Ding; Juan Casado; Dongho Kim; Jishan Wu

Biradicaloids based on quinoidal rylenes! Soluble and stable tetracyanoquaterrylenequinodimethane (QR-CN) and tetracyanohexarylenequinodimethane (HR-CN) were synthesized. QR-CN has a closed-shell quinoidal structure in the ground state, whereas HR-CN has a singlet biradical ground state. Both compounds showed very strong one-photon and two-photon absorption in the NIR range


Chemical Science | 2014

Turning on the biradical state of tetracyano-perylene and quaterrylenequinodimethanes by incorporation of additional thiophene rings

Zebing Zeng; Sangsu Lee; José L. Zafra; Masatoshi Ishida; Nina Bao; Richard D. Webster; Juan T. López Navarrete; Jun Ding; Juan Casado; Dongho Kim; Jishan Wu

Polycyclic hydrocarbon with a singlet biradical ground state has recently become a hot topic among various studies on π-conjugated systems and it is of importance to understand the fundamental structure–biradical character–physical properties relationship. In this work, we found that after incorporation of two additional thiophene rings into the closed-shell tetracyano-perylene (Per-CN) and quaterrylenequinodimethanes (QR-CN), the obtained new quinoidal compounds QDTP and QDTQ became a singlet biradical in the ground state due to the recovery of aromaticity of the thiophene rings in the biradical form and additional steric repulsion between the thiophene rings and the rylene unit. The ground state geometries and electronic structures of QDTP and QDTQ were systematically studied by variable-temperature nuclear magnetic resonance, electron spin resonance, superconducting quantum interference device measurements and FT Raman spectroscopy, assisted by density functional theory calculations. Both compounds were found to be a singlet biradical in the ground state with a small singlet–triplet energy gap and the biradical character was enlarged by elongation of the π-conjugation length. Strong one-photon absorption and large two-photon absorption cross-sections were observed for both compounds in the near-infrared region. Our studies demonstrated that a slight structural modification could significantly change the ground state and the electronic, optical and magnetic properties of a pro-aromatic π-conjugated system, and finally lead to new materials with unique properties.


Journal of the American Chemical Society | 2016

Fully Fused Quinoidal/Aromatic Carbazole Macrocycles with Poly-radical Characters.

Soumyajit Das; Tun Seng Herng; José L. Zafra; Paula Mayorga Burrezo; Masaaki Kitano; Masatoshi Ishida; Tullimilli Y. Gopalakrishna; Pan Hu; Atsuhiro Osuka; Juan Casado; Jun Ding; David Casanova; Jishan Wu

While the chemistry of open-shell singlet diradicaloids has been successfully developed in recent years, the synthesis of π-conjugated systems with poly-radical characters (i.e., beyond diradical) in the singlet ground state has been mostly unsuccessful. In this study, we report the synthesis and isolation of two fully fused macrocycles containing four (4MC) and six (6MC) alternatingly arranged quinoidal/aromatic carbazole units. Ab initio electronic structure calculations and various experimental measurements indicate that both 4MC and 6MC have an open-shell singlet ground state with moderate tetraradical and hexaradical characters, respectively. Both compounds can be thermally populated to high-spin excited states, resulting in weak magnetization at room temperature. Our study represents the first demonstration of singlet π-conjugated molecules with poly-radical characters and also gives some insights into molecular magnetism in neutral π-conjugated polycyclic heteroarenes.


Journal of Chemical Physics | 2014

Zethrene biradicals: How pro-aromaticity is expressed in the ground electronic state and in the lowest energy singlet, triplet, and ionic states

José L. Zafra; Rafael C. González Cano; M. Carmen Ruiz Delgado; Zhe Sun; Yuan Li; Juan T. López Navarrete; Jishan Wu; Juan Casado

A analysis of the electronic and molecular structures of new molecular materials based on zethrene is presented with particular attention to those systems having a central benzo-quinoidal core able to generate Kekulé biradicals whose stability is provided by the aromaticity recovery in this central unit. These Kekulé biradicals display singlet ground electronic states thanks to double spin polarization and have low-energy lying triplet excited states also featured by the aromaticity gain. Pro-aromatization is also the driving force for the stabilization of the ionized species. Moreover, the low energy lying singlet excited states also display a profound biradical fingerprint allowing to singlet exciton fission. These properties are discussed in the context of the size of the zethrene core and of its substitution. The work encompasses all known long zethrenes and makes use of a variety of experimental techniques, such as Raman, UV-Vis-NIR absorption, transient absorption, in situ spectroelectrochemistry and quantum chemical calculations. This study reveals how the insertion of suitable molecular modules (i.e., quinoidal) opens the door to new intriguing molecular properties exploitable in organic electronics.


Journal of the American Chemical Society | 2016

A Biradical Balancing Act: Redox Amphoterism in a Diindenoanthracene Derivative Results from Quinoidal Acceptor and Aromatic Donor Motifs

Gabriel E. Rudebusch; Guzmán L. Espejo; José L. Zafra; Miriam Peña-Alvarez; Sarah N. Spisak; Kotaro Fukuda; Zheng Wei; Masayoshi Nakano; Marina A. Petrukhina; Juan Casado; Michael M. Haley

The reduced and oxidized states of an open-shell diindeno[b,i]anthracene (DIAn) derivative have been investigated by experimental and theoretical techniques. As a result of moderate biradical character and the ability of cyclopenta-fused scaffolds to stabilize both positive and negative charges, DIAn exhibits rich redox chemistry with four observable and isolable charged states. Structural and electronic properties of the DIAn system are brought to light by UV-vis-NIR and Raman spectroelectrochemical measurements. Aromatization of the diindeno-fused anthracene core upon successive single-electron injections is revealed through single-crystal X-ray diffraction of radical anion and dianion salts. We present a rare case where the pseudoaromatic/quinoidal ground state of a neutral biradical polycyclic hydrocarbon leads to a stable cascade of five redox states. Our detailed investigation of the transformation of molecular structure along all four redox events provides a clearer understanding of the nature of charge carriers in ambipolar organic field-effect transistors.


Angewandte Chemie | 2016

Reversible Dimerization and Polymerization of a Janus Diradical To Produce Labile C−C Bonds and Large Chromic Effects

José L. Zafra; Lili Qiu; Naoyuki Yanai; Takamichi Mori; Masahiro Nakano; Miriam Peña Alvarez; Juan T. López Navarrete; Carlos J. Gómez-García; Miklos Kertesz; Kazuo Takimiya; Juan Casado

Conducting polymers can be synthesized by irreversible diradical monomer polymerization. A reversible version of this reaction consisting of the formation/dissociation of σ-dimers and σ-polymers from a stable quinonoidal diradical precursor is described. The reaction reversibility is made by a quinonoidal molecule which changes its structure to an aromatic species by forming weak and long intermolecular C-C single bonds. The reaction provokes a giant chromic effect of about 2.5 eV. The two opposite but complementary quinonoidal and aromatic tautomers provide the Janus faces of the reactants and products which produces the observed chromic effect. A reaction mechanism is proposed to explain the variety of final products starting with structurally very similar reactants. These reversible reactions, covering an unusual regime of weak covalent supramolecular bonding, yield products which might be envisaged as novel molecular and polymeric soft matter phases.

Collaboration


Dive into the José L. Zafra's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jishan Wu

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jun Ding

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard D. Webster

Nanyang Technological University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge