José Luis Acuña
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Luis Acuña.
Nature Communications | 2014
Xabier Irigoien; Thor A. Klevjer; Anders Røstad; U. Martinez; Guillermo Boyra; José Luis Acuña; Antonio Bode; Fidel Echevarría; Juan Ignacio González-Gordillo; Santiago Hernández-León; S. Agustí; Dag L. Aksnes; Carlos M. Duarte; Stein Kaartvedt
With a current estimate of ~1,000 million tons, mesopelagic fishes likely dominate the world total fishes biomass. However, recent acoustic observations show that mesopelagic fishes biomass could be significantly larger than the current estimate. Here we combine modelling and a sensitivity analysis of the acoustic observations from the Malaspina 2010 Circumnavigation Expedition to show that the previous estimate needs to be revised to at least one order of magnitude higher. We show that there is a close relationship between the open ocean fishes biomass and primary production, and that the energy transfer efficiency from phytoplankton to mesopelagic fishes in the open ocean is higher than what is typically assumed. Our results indicate that the role of mesopelagic fishes in oceanic ecosystems and global ocean biogeochemical cycles needs to be revised as they may be respiring ~10% of the primary production in deep waters.
Science | 2011
José Luis Acuña; Ángel López-Urrutia; Sean P. Colin
Jellyfish process prey at the same rates as fish, suggesting that a shift to jellyfish-dominated systems is possible. Jellyfishes have functionally replaced several overexploited commercial stocks of planktivorous fishes. This is paradoxical, because they use a primitive prey capture mechanism requiring direct contact with the prey, whereas fishes use more efficient visual detection. We have compiled published data to show that, in spite of their primitive life-style, jellyfishes exhibit similar instantaneous prey clearance and respiration rates as their fish competitors and similar potential for growth and reproduction. To achieve this production, they have evolved large, water-laden bodies that increase prey contact rates. Although larger bodies are less efficient for swimming, optimization analysis reveals that large collectors are advantageous if they move through the water sufficiently slowly.
The American Naturalist | 2001
José Luis Acuña
Neutrally buoyant zooplankton are virtually free from the gravitational forces acting on terrestrial organisms, which allows for their adoption of large, watery bodies (Harbison 1992). Although this morphological trait is present in several phyla and is nearly ubiquitous in marine systems, the reasons for its great success remain an evolutionary mystery. From a top-down perspective, a transparent, gelatinous body may offer effective concealment from predators (Johnsen 2000) and may deter predation because of its low nutritive value (Verity and Smetacek 1996). However, the light-deprived depths of the deep sea teem with gelatinous life, many gelatinous animals exhibit bioluminescence, and some are not transparent (see Harbison 1992), which casts serious doubts on the transparency hypothesis. Moreover, there are predators specialized in gelatinous plankton (see Harbison 1998 for a comprehensive account of salp predators). Last, from a bottom-up perspective, a gelatinous body may allow survival at the low food concentrations prevailing in the open ocean (see Harbison 1992 for this and other hypotheses related to gelatinous bodies). Salps, appendicularians, pyrosomas, and doliolids, collectively known as pelagic tunicates, are extremely watery animals that filter from very small colloids to large phytoplankton chains. They serve as prey for a host of marine animals, including fish, and under benign food conditions, they exhibit population growth rates that rank at the top among the metazoans (Bone 1998b). This allows them to
Microbial Ecology | 2014
Alfredo F. Braña; Hans-Peter Fiedler; H. S. Nava; Verónica González; Aida Sarmiento-Vizcaíno; Axayacatl Molina; José Luis Acuña; Luis A. García; Gloria Blanco
Streptomycetes are widely distributed in the marine environment, although only a few studies on their associations to algae and coral ecosystems have been reported. Using a culture-dependent approach, we have isolated antibiotic-active Streptomyces species associated to diverse intertidal marine macroalgae (Phyllum Heterokontophyta, Rhodophyta, and Chlorophyta), from the central Cantabrian Sea. Two strains, with diverse antibiotic and cytotoxic activities, were found to inhabit these coastal environments, being widespread and persistent over a 3-year observation time frame. Based on 16S rRNA sequence analysis, the strains were identified as Streptomyces cyaneofuscatus M-27 and Streptomyces carnosus M-40. Similar isolates to these two strains were also associated to corals and other invertebrates from deep-sea coral reef ecosystem (Phyllum Cnidaria, Echinodermata, Arthropoda, Sipuncula, and Anelida) living up to 4.700-m depth in the submarine Aviles Canyon, thus revealing their barotolerant feature. These two strains were also found to colonize terrestrial lichens and have been repeatedly isolated from precipitations from tropospheric clouds. Compounds with antibiotic and cytotoxic activities produced by these strains were identified by high-performance liquid chromatography (HPLC) and database comparison. Antitumor compounds with antibacterial activities and members of the anthracycline family (daunomycin, cosmomycin B, galtamycin B), antifungals (maltophilins), anti-inflamatory molecules also with antituberculosis properties (lobophorins) were identified in this work. Many other compounds produced by the studied strains still remain unidentified, suggesting that Streptomyces associated to algae and coral ecosystems might represent an underexplored promising source for pharmaceutical drug discovery.
PLOS ONE | 2013
Ana Gordoa; José Luis Acuña; Roser Farrés; Kathrin Bacher
This study investigates the predation of P . noctiluca ephyrae on Atlantic Bluefin tuna (ABFT) eggs under different experimental conditions. The specific factors considered in the experimental design were: a) water mix conditions to explore predation under two-dimensional (2D) and three-dimensional (3D) prey distributions, b) prey density to investigate the ingestion rate capacity, and c) incubation time to inspect gut saturation. The eggs and jellyfish ephyrae were collected during the 2012 ABFT spawning survey off Ibiza (Balearic Isl., Western Mediterranean). The results showed that the proportion of feeding ephyrae increased with size. The mean clearance rate of feeding ephyrae, 4.14 L h-1, was the highest ever recorded for ephyrae. Under calm conditions the eggs floated at the surface (2D spatial arrangement) and the clearance rates, at low prey densities, were at least twice those under mixed conditions (3D spatial arrangement). At high prey density, clearance rate did not differ between mix conditions, probably due to the fast gut saturation, which was reached in c.a. 15 min, as revealed by time series observations of gut contents. The fast saturation of ephyrae and their slow digestion time of approximately 18 h suggest the existence of a diel feeding periodicity. We conclude that in the Western Mediterranean, P . noctiluca ephyrae are capable of predating on ABFT eggs, a highly pulsed and spatially restricted resource that potentially switches from a 3D to a 2D configuration in the absence of wind-generated turbulence. The P . noctiluca and Atlantic Bluefin tuna egg system might represent an example of a general mechanism linking pelagic and neustonic food webs.
International Journal of Systematic and Evolutionary Microbiology | 2015
Aida Sarmiento-Vizcaíno; Verónica González; Alfredo F. Braña; Axayacatl Molina; José Luis Acuña; Luis A. García; Gloria Blanco
An actinobacterium strain (M-201(T)) was isolated from a deep-sea scleractinian coral (Fam. Caryophillidae) collected at 1500 m depth in the Avilés Canyon in the Cantabrian Sea, Asturias, Spain. Strain M-201(T) grew at pH 6.0-9.0 (optimum pH 7.0), between 4 and 37 °C (optimum 28 °C) and at salinities of 0.5-10.5% (w/v) NaCl (optimum 0.5-3.0%). The peptidoglycan contained the amino acids Lys, Ala, Thr, Glu and one unknown amino acid component, and belonged to type A4α, and the cell-wall sugars are glucose, mannose and galactose. The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, an unknown phosphoglycolipid and seven unknown glycolipids. The predominant menaquinones were MK-9(H4) and MK-9(H6). Major cellular fatty acids were anteiso-C(15 : 0), iso-C(15 : 0) and anteiso-C(17 : 0). The genomic DNA G+C content was 72.4 mol%. The chemotaxonomic properties supported the affiliation of strain M-201(T) to the genus Myceligenerans . Phylogenetic analysis based on 16S rRNA gene sequences revealed that the organism was most closely related to Myceligenerans crystallogenes CD12E2-27(T) (98.2% 16S rRNA gene sequence similarity). However, it had a relatively low DNA-DNA relatedness value with the above strain (48%). The isolate showed antibiotic activity against Escherichia coli , Micrococcus luteus ATCC 14452 and Saccharomyces cerevisiae var. carlsbergensis. To the best of our knowledge, this is the first report of antibiotic production in the genus Myceligenerans . The differences in phenotypic, metabolic, ecological and phylogenetic characteristics justify the proposal of a novel species of the genus Myceligenerans , Myceligenerans cantabricum sp. nov., with M-201(T) ( = CECT 8512(T) = DSM 28392(T)) as the type strain.
AMBIO: A Journal of the Human Environment | 2016
Antonella Rivera; Stefan Gelcich; Lucía García-Flórez; José Luis Acuña
The gooseneck barnacle fishery in Asturias (N. Spain) has undergone three important changes: (1) the early implementation of a co-management system based on Territorial User Rights for Fishing, (2) a change in management measures (due to a decrease in landings), and (3) an economic crisis. This has allowed us to analyze the systems’ sustainability in time through examining five critical variables: landings, effort, catch per unit effort (CPUE), mean market prices, and annual revenue. Additionally, we used focus groups and questionnaires to determine the response of the system to these three changes. Co-management has succeeded in maintaining or increasing CPUE throughout all management areas and produced stable mean market prices. This was achieved through flexible management policies and adaptive strategies adopted by the fishers, such as increased selectivity and diversification. The analysis of this fishery provides important lessons regarding the need to understand the evolutionary dynamics of co-management and the importance of embracing adaptive capacity.
PLOS ONE | 2013
Antonella Rivera; Nicolás Weidberg; Antonio F. Pardiñas; Ricardo González-Gil; Lucía García-Flórez; José Luis Acuña
The effect of coastal upwelling on the recruitment and connectivity of coastal marine populations has rarely been characterized to a level of detail to be included into sound fishery management strategies. The gooseneck barnacle (Pollicipes pollicipes) fishery at the Cantabrian Coast (Northern Spain) is located at the fringes of the NW Spanish Upwelling system. This fishery is being co-managed through a fine-scale, interspersed set of protected rocks where each rock receives a distinct level of protection. Such interspersion is potentially beneficial, but the extent to which such spacing is consistent with mean larval dispersal distances is as yet unknown. We have simulated the spread of gooseneck barnacle larvae in the Central Cantabrian Coast using a high-resolution time-series of current profiles measured at a nearshore location. During a year of high upwelling activity (2009), theoretical recruitment success was 94% with peak recruitment predicted 56 km west of the emission point. However, for a year of low upwelling activity (2011) theoretical recruitment success dropped to 15.4% and peak recruitment was expected 13 km east of the emission point. This is consistent with a positive correlation between catch rates and the Integrated Upwelling Index, using a 4-year lag to allow recruits to reach commercial size. Furthermore, a net long-term westward larval transport was estimated by means of mitochondrial cytochrome c oxidase subunit I (COI) sequences for five populations in the Cantabrian Sea. Our results call into question the role of long distance dispersal, driven by the mesoscale processes in the area, in gooseneck barnacle populations and point to the prevalent role of small-scale, asymmetric connectivity more consistent with the typical scale of the co-management process in this fishery.
Marine Drugs | 2017
Aida Sarmiento-Vizcaíno; Alfredo F. Braña; Ignacio Pérez-Victoria; Jesús Martín; Nuria de Pedro; Mercedes de la Cruz; Caridad Díaz; Francisca Vicente; José Luis Acuña; Fernando Reyes; Luis A. García; Gloria Blanco
The present article describes a structurally novel natural product of the paulomycin family, designated as paulomycin G (1), obtained from the marine strain Micromonospora matsumotoense M-412, isolated from Cantabrian Sea sediments collected at 2000 m depth during an oceanographic expedition to the submarine Avilés Canyon. Paulomycin G is structurally unique since—to our knowledge—it is the first member of the paulomycin family of antibiotics lacking the paulomycose moiety. It is also the smallest bioactive paulomycin reported. Its structure was determined using HRMS and 1D and 2D NMR spectroscopy. This novel natural product displays strong cytotoxic activities against different human tumour cell lines, such as pancreatic adenocarcinoma (MiaPaca_2), breast adenocarcinoma (MCF-7), and hepatocellular carcinoma (HepG2). The compound did not show any significant bioactivity when tested against a panel of bacterial and fungal pathogens.
Journal of the Marine Biological Association of the United Kingdom | 2008
José Luis Acuña; Araceli Puente; Ricardo Anadón; Consolación Fernández; María Luisa Vera; José Manuel Rico Ordás; Julio Arrontes; José A. Juanes
Following the accident of the oil tanker ‘Prestige’, we surveyed the large scale fuel deposition patterns on the Cantabrian shore (northern Spain) covering three regions (from west to east): (i) Asturias, west of Cape Penas (24 segments surveyed); (ii) Asturias, east of Cape Penas (33 segments surveyed); and (iii) Cantabria (also east of Cape Penas, 256 segments surveyed). Fuel arrived to the Cantabrian Coast as a single oil wave which was more intense to the east than to the west of Cape Penas. The mean percentage of coast length affected was 25, 41 and 15% in western Asturias, eastern Asturias and Cantabria, respectively. However, less than 10% of the substrate was covered by fuel in oiled patches, thus the impact was moderate. We conclude that these patterns are consistent with fuel transport by the Iberian Poleward Current, a hydrographic feature typical of this region during winter.