José Luis Corchero
Autonomous University of Barcelona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Luis Corchero.
Microbial Cell Factories | 2009
Neus Ferrer-Miralles; Joan Domingo-Espín; José Luis Corchero; Esther Vázquez; Antonio Villaverde
Most of the hosts used to produce the 151 recombinant pharmaceuticals so far approved for human use by the Food and Drug Administration (FDA) and/or by the European Medicines Agency (EMEA) are microbial cells, either bacteria or yeast. This fact indicates that despite the diverse bottlenecks and obstacles that microbial systems pose to the efficient production of functional mammalian proteins, namely lack or unconventional post-translational modifications, proteolytic instability, poor solubility and activation of cell stress responses, among others, they represent convenient and powerful tools for recombinant protein production. The entering into the market of a progressively increasing number of protein drugs produced in non-microbial systems has not impaired the development of products obtained in microbial cells, proving the robustness of the microbial set of cellular systems (so far Escherichia coli and Saccharomyces cerevisae) developed for protein drug production. We summarize here the nature, properties and applications of all those pharmaceuticals and the relevant features of the current and potential producing hosts, in a comparative way.
Trends in Biotechnology | 2009
José Luis Corchero; Antonio Villaverde
Nano-sized magnetic particles are increasingly being used across a wide spectrum of biomedical fields. Upon functionalization to enable specific binding, magnetic particles and their targets can be conveniently positioned in vitro and in vivo by the distal application of magnetic fields. Furthermore, such particles can be magnetically heated after reaching their in vivo targets, thus inducing localized cell death that has a considerable therapeutic value in, for instance, cancer therapy. In this context, innovative biomedical research has produced novel applications that have exciting clinical potential. Such applications include magnetically enhanced transfection, magnetically assisted gene therapy, magnetically induced hyperthermia and magnetic-force-based tissue engineering, and the principles and utilities of these applications will be discussed here.
Trends in Biotechnology | 2012
Elena García-Fruitós; Esther Vázquez; César Díez-Gil; José Luis Corchero; Joaquin Seras-Franzoso; Imma Ratera; Jaume Veciana; Antonio Villaverde
Many protein species produced in recombinant bacteria aggregate as insoluble protein clusters named inclusion bodies (IBs). IBs are discarded from further processing or are eventually used as a pure protein source for in vitro refolding. Although usually considered as waste byproducts of protein production, recent insights into the physiology of recombinant bacteria and the molecular architecture of IBs have revealed that these protein particles are unexpected functional materials. In this Opinion article, we present the relevant mechanical properties of IBs and discuss the ways in which they can be explored as biocompatible nanostructured materials, mainly, but not exclusively, in biocatalysis and tissue engineering.
Biotechnology Advances | 2013
José Luis Corchero; Brigitte Gasser; David Resina; Wesley Smith; Ermenegilda Parrilli; Felícitas Vázquez; Ibane Abasolo; Maria Giuliani; Jussi Jäntti; Pau Ferrer; Markku Saloheimo; Diethard Mattanovich; Simó Schwartz; Maria Luisa Tutino; Antonio Villaverde
Both conventional and innovative biomedical approaches require cost-effective protein drugs with high therapeutic potency, improved bioavailability, biocompatibility, stability and pharmacokinetics. The growing longevity of the human population, the increasing incidence and prevalence of age-related diseases and the better comprehension of genetic-linked disorders prompt to develop natural and engineered drugs addressed to fulfill emerging therapeutic demands. Conventional microbial systems have been for long time exploited to produce biotherapeutics, competing with animal cells due to easier operation and lower process costs. However, both biological platforms exhibit important drawbacks (mainly associated to intracellular retention of the product, lack of post-translational modifications and conformational stresses), that cannot be overcome through further strain optimization merely due to physiological constraints. The metabolic diversity among microorganisms offers a spectrum of unconventional hosts, that, being able to bypass some of these weaknesses, are under progressive incorporation into production pipelines. In this review we describe the main biological traits and potentials of emerging bacterial, yeast, fungal and microalgae systems, by comparing selected leading species with well established conventional organisms with a long run in protein drug production.
Biotechnology and Bioengineering | 1998
José Luis Corchero; Antonio Villaverde
A set of eight closely related plasmid constructs carrying CI857-controlled recombinant genes has been used as a model to study plasmid stability in Escherichia coli, in the absence of antibiotic selection. Plasmid loss rates and relative interdivision times of plasmid-bearing cells and plasmid-free cells have been analyzed throughout prolonged cultures. Whereas the calculated plasmid loss rates are not consistent for a given plasmid and set of conditions, the relative growth fitness of plasmid-bearing cells is highly reproducible. In the absence of gene expression, plasmid maintenance is influenced by the length of the cloned segment, the growth temperature, and the plasmid copy number, but not by the plasmid size. At high, inducing temperatures, the effects of the metabolic burden are eclipsed by the toxicity exhibited by the different proteins produced, which is determined by structural features. Despite the multifactorial nature of the negative pressures acting independently on plasmid-bearing cells, the relative cell fitness in a mixed cell population is very reproducible for a given vector, resulting in a monotonous spread of the plasmid-free cells in recombinant cultures.
Journal of Biotechnology | 1996
José Luis Corchero; Elisenda Viaplana; Antoni Benito; Antonio Villaverde
The VP1 protein (23 kDa) of the foot-and-mouth disease virus has been produced in MC1061 and BL21 E. coli strains as beta-galactosidase fusion proteins, joined to either the amino and/or the carboxy termini of the bacterial enzyme. In BL21, devoid of La protease, all the recombinant fusion proteins are produced at higher yields than in MC1061, and occur mainly as inclusion bodies. The fusion of VP1 at the carboxy terminus yields a protease-sensitive protein whose degradation releases a stable, enzymatically active polypeptide indistinguishable from the native beta-galactosidase. On the contrary, when the same viral domain is fused to the amino terminus, the resulting chimeric protein is resistant to proteolysis even in the soluble form. These data demonstrate that the position of the heterologous domain in beta-galactosidase fusion proteins would not be irrelevant since it can dramatically influence properties of biotechnological interest such as solubility and proteolytic resistance.
Microbial Cell Factories | 2015
Uwe Mamat; Kathleen Wilke; David Bramhill; Andra B. Schromm; Buko Lindner; Thomas A. Kohl; José Luis Corchero; Antonio Villaverde; Lana Schaffer; Steven R. Head; Chad Souvignier; Timothy C. Meredith; Ronald W. Woodard
BackgroundLipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product.ResultsAs an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels.ConclusionsThis paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.
Advanced Materials | 2012
Esther Vázquez; José Luis Corchero; Joan F. Burgueño; Joaquin Seras-Franzoso; Ana Kosoy; Ramon Bosser; Rosa Mendoza; Joan Marc Martínez-Láinez; Ursula Rinas; Ester Fernández; Luis Ruiz-Avila; Elena García-Fruitós; Antonio Villaverde
Inclusion bodies (50-500 nm in diameter) produced in recombinant bacteria can be engineered to contain functional proteins with therapeutic potential. Upon exposure, these protein particles are efficiently internalized by mammalian cells and promote recovery from diverse stresses. Being fully biocompatible, inclusion bodies are a novel platform, as tailored nanopills, for sustained drug release in advanced cell therapies.
ACS Nano | 2014
María Virtudes Céspedes; Ugutz Unzueta; Witold I. Tatkiewicz; Alejandro Sánchez-Chardi; Oscar Conchillo-Solé; Patricia Álamo; Zhikun Xu; Isolda Casanova; José Luis Corchero; Mireia Pesarrodona; Juan Cedano; Xavier Daura; Imma Ratera; Jaume Veciana; Neus Ferrer-Miralles; Esther Vázquez; Antonio Villaverde; Ramon Mangues
The fully de novo design of protein building blocks for self-assembling as functional nanoparticles is a challenging task in emerging nanomedicines, which urgently demand novel, versatile, and biologically safe vehicles for imaging, drug delivery, and gene therapy. While the use of viruses and virus-like particles is limited by severe constraints, the generation of protein-only nanocarriers is progressively reachable by the engineering of protein-protein interactions, resulting in self-assembling functional building blocks. In particular, end-terminal cationic peptides drive the organization of structurally diverse protein species as regular nanosized oligomers, offering promise in the rational engineering of protein self-assembling. However, the in vivo stability of these constructs, being a critical issue for their medical applicability, needs to be assessed. We have explored here if the cross-molecular contacts between protein monomers, generated by end-terminal cationic peptides and oligohistidine tags, are stable enough for the resulting nanoparticles to overcome biological barriers in assembled form. The analyses of renal clearance and biodistribution of several tagged modular proteins reveal long-term architectonic stability, allowing systemic circulation and tissue targeting in form of nanoparticulate material. This observation fully supports the value of the engineered of protein building blocks addressed to the biofabrication of smart, robust, and multifunctional nanoparticles with medical applicability that mimic structure and functional capabilities of viral capsids.
Microbial Cell Factories | 2012
Antonio Villaverde; Elena García-Fruitós; Ursula Rinas; Joaquin Seras-Franzoso; Ana Kosoy; José Luis Corchero; Esther Vázquez
A growing number of insights on the biology of bacterial inclusion bodies (IBs) have revealed intriguing utilities of these protein particles. Since they combine mechanical stability and protein functionality, IBs have been already exploited in biocatalysis and explored for bottom-up topographical modification in tissue engineering. Being fully biocompatible and with tuneable bio-physical properties, IBs are currently emerging as agents for protein delivery into mammalian cells in protein-replacement cell therapies. So far, IBs formed by chaperones (heat shock protein 70, Hsp70), enzymes (catalase and dihydrofolate reductase), grow factors (leukemia inhibitory factor, LIF) and structural proteins (the cytoskeleton keratin 14) have been shown to rescue exposed cells from a spectrum of stresses and restore cell functions in absence of cytotoxicity. The natural penetrability of IBs into mammalian cells (reaching both cytoplasm and nucleus) empowers them as an unexpected platform for the controlled delivery of essentially any therapeutic polypeptide. Production of protein drugs by biopharma has been traditionally challenged by IB formation. However, a time might have arrived in which recombinant bacteria are to be engineered for the controlled packaging of therapeutic proteins as nanoparticulate materials (nanopills), for their extra- or intra-cellular release in medicine and cosmetics.