José Luis Martín-Ventura
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Luis Martín-Ventura.
Circulation | 2004
José Luis Martín-Ventura; Mari Carmen Duran; Luis Miguel Blanco-Colio; Olivier Meilhac; Anne Leclercq; Jean-Baptiste Michel; Ole Nørregaard Jensen; Sergio Hernandez-Merida; José Tuñón; Jesús Egido
Background—We hypothesized that normal and pathological vessel walls display a differential pattern of secreted proteins. We have recently set up the conditions for comparing secretomes from carotid atherosclerotic plaques and control arteries using a proteomic approach to assess whether differentially secreted proteins could represent markers for atherosclerosis. Methods and Results—Normal endartery segments and different regions of endarterectomy pieces (noncomplicated/complicated plaques) were incubated in protein-free medium, and the released proteins were analyzed by 2D electrophoresis (2-DE). Among the differently secreted proteins, we have identified heat shock protein-27 (HSP27). Surprisingly, compared with control arteries, HSP27 release was drastically decreased in atherosclerotic plaques and barely detectable in complicated plaque supernatants. HSP27 was expressed primarily by intact vascular cells of normal arteries and carotid plaques (immunohistochemistry). Plasma detection of soluble HSP27 showed that circulating HSP27 levels are significantly decreased in the blood of patients with carotid stenosis relative to healthy subjects (0.19 [0.1 to 1.95] versus 83 [71.8 to 87.8]) ng/mL, P<0.0001). Conclusions—HSP27 secretion is decreased in complicated atherosclerotic plaques, and sHSP27 plasma levels are decreased in atherosclerotic patients compared with healthy subjects. Plasma sHSP27 levels could be a potential index of atherosclerosis, although further validation is needed in large patient cohorts.
BioMed Research International | 2011
Carlos Zaragoza; Carmen Gomez-Guerrero; José Luis Martín-Ventura; Luis Miguel Blanco-Colio; Begoña Lavin; Beñat Mallavia; Carlos Tarin; Sebastian Mas; Alberto Ortiz; Jesús Egido
Cardiovascular diseases are the first leading cause of death and morbidity in developed countries. The use of animal models have contributed to increase our knowledge, providing new approaches focused to improve the diagnostic and the treatment of these pathologies. Several models have been developed to address cardiovascular complications, including atherothrombotic and cardiac diseases, and the same pathology have been successfully recreated in different species, including small and big animal models of disease. However, genetic and environmental factors play a significant role in cardiovascular pathophysiology, making difficult to match a particular disease, with a single experimental model. Therefore, no exclusive method perfectly recreates the human complication, and depending on the model, additional considerations of cost, infrastructure, and the requirement for specialized personnel, should also have in mind. Considering all these facts, and depending on the budgets available, models should be selected that best reproduce the disease being investigated. Here we will describe models of atherothrombotic diseases, including expanding and occlusive animal models, as well as models of heart failure. Given the wide range of models available, today it is possible to devise the best strategy, which may help us to find more efficient and reliable solutions against human cardiovascular diseases.
Atherosclerosis | 2002
Miguel Angel Hernández-Presa; José Luis Martín-Ventura; Mónica Ortego; Almudena Gómez-Hernández; José Tuñón; Purificación Hernández-Vargas; Luis Miguel Blanco-Colio; Sebastian Mas; César Aparicio; Luis Ortega; Juan Gómez Gerique; C. Díaz; Gonzalo Hernández; Jesús Egido
Inflammation is involved in the genesis and rupture of atherosclerotic plaques. We assessed the effect of atorvastatin (ATV) on the expression of cyclooxygenase-2 (COX-2) and other proinflammatory molecules in a rabbit model of atherosclerosis. Fourteen animals underwent injury of femoral arteries and 2 weeks of atherogenic diet. Afterwards, they were randomized to receive either 5 mg/kg per day of ATV (n=8) or no treatment (NT, n=6) during 4 weeks, and were finally killed. ATV reduced lipid levels, neointimal size (0.13 (0.03-0.29) mm(2) vs 0.65 (0.14-1.81) mm(2), P=0.005) and the percentage of neointimal area positive for macrophages (1% (0-3) vs 19% (5-32), P=0.001), COX-2 (32% (23-39) vs 60% (37-81) P=0.019), interleukin-8 (IL-8) (23% (3-63) vs 63% (25-88) P=0.015), and metalloproteinase-3 (19% (12-34) vs 42% (27-93), P=0.010), without significant differences in COX-1 expression (immunohistochemistry). In situ hybridization confirmed a decreased expression of COX-2 mRNA (22% (5-40) vs 43% (34-59) P=0.038). The activity of nuclear factor-kappaB, which controls many proinflammatory genes including COX-2, was reduced in atherosclerotic lesions (3538 (2663-5094) vs 8696 (5429-11312)) positive nuclei per mm(2), P=0.001) and circulating mononuclear cells (2966 vs 17130 arbitrary units). In cultured vascular smooth muscle cells, ATV reduced the expression of COX-2 mRNA induced by IL-1beta and TNF-alpha without affecting COX-1 expression. In conclusion, ATV, besides decreasing a number of inflammatory mediators in the atherosclerotic lesion, significantly downregulates COX-2 both in vivo and in vitro. These anti-inflammatory actions could partially account for the reduction of acute coronary events achieved by statins.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2007
Luis Miguel Blanco-Colio; José Luis Martín-Ventura; Begoña Muñoz-García; Josune Orbe; José A. Páramo; Jean-Baptiste Michel; Alberto Ortiz; Olivier Meilhac; Jesús Egido
Objectives—Assessment of vascular risk in asymptomatic patients and the response to medical therapy is a major challenge for prevention of cardiovascular events. Our aim was to identify proteins differentially released by healthy versus atherosclerotic arterial walls, which could be found in plasma and serve as markers of atherosclerosis. Methods and Results—We have analyzed supernatants obtained from cultured human carotid plaques and healthy arteries by surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry ProteinChip System. Surface-enhanced laser-desorption/ionization analysis unveiled an 18.4-kDa peak released in lower amount by carotid plaques than normal endarteries. This protein was identified as soluble tumor necrosis factor-like weak inducer of apoptosis (sTWEAK). To confirm that sTWEAK was the protein of interest, Western blot and enzyme-linked immunosorbent assay were performed. Both techniques confirmed that sTWEAK levels were decreased in carotid plaque supernatants. Subsequent measurement of sTWEAK in plasma showed a reduced concentration in subjects with carotid stenosis (N=30) compared with healthy subjects matched by sex and age (N=28) (P<0.001). Furthermore, in a test population of 106 asymptomatic subjects, we showed that sTWEAK concentrations negatively correlated with the carotid intima-media thickness (r=−0.4; P<0.001), an index of subclinical atherosclerosis. Conclusions—These results suggest that sTWEAK could be a potential biomarker of atherosclerosis.
Stroke | 2005
José Luis Martín-Ventura; Luis Miguel Blanco-Colio; Almudena Gómez-Hernández; Begoña Muñoz-García; Melina Vega; J. Serrano; Luis Ortega; Gonzalo Hernández; José Tuñón; Jesús Egido
Background and Purpose— To investigate the effect of short-term high-dose atorvastatin on blood and plaque inflammation in patients with carotid stenosis. Methods— Twenty patients undergoing carotid endarterectomy without previous statin treatment were randomized to receive either atorvastatin 80 mg/d (n=11) or no statins (n=9) for 1 month. We studied inflammatory mediators in plasma (enzyme-linked immunosorbent assay), peripheral blood mononuclear cells (PBMCs; quantitative RT-PCR and EMSA) and plaques (immunohistochemistry and Southwestern histochemistry). Results— Atorvastatin significantly decreased total and low-density lipoprotein cholesterol and prostaglandin E2 plasma levels. PBMCs from treated patients showed impaired NF-&kgr;B activation and MCP-1 and COX-2 mRNA expression. Carotid atherosclerotic plaques demonstrated a significant reduction in macrophage infiltration, activated NF-&kgr;B, and COX-2 and MCP-1 expression. Conclusions— Intensive treatment with atorvastatin decreases inflammatory activity of PBMCs and carotid atherosclerotic plaques in 1 month. These data strongly suggest that the antiinflammatory effect of high doses of statins in humans can be seen very early.
Atherosclerosis | 2009
Juan Antonio Moreno; Begoña Muñoz-García; José Luis Martín-Ventura; Josune Orbe; José A. Páramo; Luis Ortega; Jesús Egido; Luis Miguel Blanco-Colio
BACKGROUND CD163 is a new potential scavenger receptor of Tumor necrosis factor-like weak inducer of apoptosis (TWEAK) which elicits diverse biologic actions involved in atherosclerosis. We have analyzed the importance of TWEAK-CD163 interaction in atherosclerosis. METHODS TWEAK and CD163 interaction was studied in cultured human macrophages. Moreover, TWEAK and CD163 expression was analyzed in carotid atherosclerotic plaques (immunohistochemistry) and plasma (ELISA). We have also assessed their potential association with intima/media thickness (IMT) in asymptomatic subjects. RESULTS In vitro studies revealed that CD163-expressing macrophages can bind and internalize TWEAK protein exogenously added from supernatants. Accordingly, we observed an inverse correlation between the expression of CD163 and TWEAK (r=-0.51; p=0.008) in the shoulder region of atherosclerotic plaques obtained from 25 patients undergoing carotid endarterectomy. The same trend was observed when we analyzed the plasma concentration of both proteins in 90 subjects free from clinical cardiovascular disease (r=-0.25; p=0.016) in which carotid ultrasonography was performed to determine IMT. In these subjects, we found a positive correlation between sCD163 and IMT (r=0.36; p<0.001) and between sCD163-sTWEAK ratio and IMT (r=0.51; p<0.001). This association remained significant after adjusting for traditional cardiovascular risk factors and inflammatory markers explaining 39% (sCD163) or 48% (sCD163-sTWEAK ratio) of IMT variance. CONCLUSIONS Our results suggest that TWEAK-CD163 interaction takes place in vivo, probably decreasing TWEAK plasma concentration. Furthermore, we have observed that CD163-TWEAK plasma ratio is a potential biomarker of clinical and subclinical atherosclerosis.
Stroke | 2006
Begoña Muñoz-García; José Luis Martín-Ventura; Elena Martinez; Santiago Sánchez; Gonzalo Hernández; Luis Ortega; Alberto Ortiz; Jesús Egido; Luis Miguel Blanco-Colio
Background and Purpose— Interaction between different members of the tumor necrosis factor superfamily and their receptors elicits diverse biologic actions that are implicated in the pathogenesis of atherosclerosis. We have analyzed the expression of Fn14 and its ligand TWEAK in carotid atherosclerotic plaques and its potential modulation by atorvastatin in vivo. Furthermore, we have studied whether proinflammatory cytokines regulate Fn14 expression in human aortic smooth muscle cells (hASMCs) in culture as well as the potential regulation by atorvastatin treatment. Methods— Fn14 and TWEAK expression was analyzed in human carotid atherosclerotic plaques. Furthermore, Fn14 expression was studied in hASMCs in culture. Results— Fn14 and TWEAK are expressed in macrophages and smooth muscle cells in carotid atherosclerotic plaques. Proinflammatory cytokines (interleukin-1β and interferon-γ) upregulate Fn14 expression in hASMCs. This effect was prevented by atorvastatin treatment and reversed by mevalonate and geranylgeranyl pyrophosphate. Geranylgeranyl transferase inhibitor, toxin B (Rac and Rho inhibitor), C3 exoenzyme (Rho inhibitor), and Y-27632 (Rho kinase inhibitor) also decreased Fn14 expression, implicating the Rho/Rho kinase pathway in the regulation of Fn14 expression. Finally, atorvastatin treatment reduced Fn14 expression in vivo. Conclusions— TWEAK and Fn14 are expressed in atherosclerotic plaques and could be novel mediators of atherosclerosis. Atorvastatin diminishes Fn14 expression in vitro and in vivo providing novel information of the beneficial properties of statins.
Journal of The American Society of Nephrology | 2009
Maria Dolores Sanchez-Niño; Ana Belen Sanz; Pekka Ihalmo; Markus Lassila; Harry Holthöfer; Sergio Mezzano; Claudio Aros; Per-Henrik Groop; Moin A. Saleem; Peter W. Mathieson; Robert Langham; Matthias Kretzler; Viji Nair; Kevin V. Lemley; Robert G. Nelson; Eero Mervaala; Deborah Mattinzoli; Maria Pia Rastaldi; Marta Ruiz-Ortega; José Luis Martín-Ventura; Jesús Egido; Alberto Ortiz
Although metabolic derangement plays a central role in diabetic nephropathy, a better understanding of secondary mediators of injury may lead to new therapeutic strategies. Expression of macrophage migration inhibitory factor (MIF) is increased in experimental diabetic nephropathy, and increased tubulointerstitial mRNA expression of its receptor, CD74, has been observed in human diabetic nephropathy. Whether CD74 transduces MIF signals in podocytes, however, is unknown. Here, we found glomerular and tubulointerstitial CD74 mRNA expression to be increased in Pima Indians with type 2 diabetes and diabetic nephropathy. Immunohistochemistry confirmed the increased glomerular and tubular expression of CD74 in clinical and experimental diabetic nephropathy and localized glomerular CD74 to podocytes. In cultured human podocytes, CD74 was expressed at the cell surface, was upregulated by high concentrations of glucose and TNF-alpha, and was activated by MIF, leading to phosphorylation of extracellular signal-regulated kinase 1/2 and p38. High glucose also induced CD74 expression in a human proximal tubule cell line (HK2). In addition, MIF induced the expression of the inflammatory mediators TRAIL and monocyte chemoattractant protein 1 in podocytes and HK2 cells in a p38-dependent manner. These data suggest that CD74 acts as a receptor for MIF in podocytes and may play a role in the pathogenesis of diabetic nephropathy.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2009
Guadalupe Ortiz-Muñoz; José Luis Martín-Ventura; Purificación Hernández-Vargas; Beñat Mallavia; Virginia Lopez-Parra; Oscar Lopez-Franco; Begoña Muñoz-García; Paula Fernandez-Vizarra; Luis Ortega; Jesús Egido; Carmen Gomez-Guerrero
Objective—Suppressors of cytokine signaling (SOCS) proteins are intracellular regulators of receptor signal transduction, mainly Janus kinase/signal transducers and activators of transcription (JAK/STAT). We investigated the effects of SOCS modulation on the JAK/STAT-dependent responses in vascular cells, and their implication in atherosclerotic plaque development. Methods and Results—Immunohistochemistry in human plaques revealed a high expression of SOCS1 and SOCS3 by vascular smooth muscle cells (VSMCs) and macrophages in the inflammatory region of the shoulders, when compared to the fibrous area. SOCS were also increased in aortic lesions from apoE−/− mice. In cultured VSMCs, endothelial cells, and monocytes, SOCS1 and SOCS3 were transiently induced by proinflammatory cytokines, proatherogenic lipoproteins, and immune molecules. Furthermore, overexpression of SOCS suppressed STAT activation and reduced inflammatory gene expression and cell growth, whereas SOCS knockdown increased these cell responses. In vivo, antisense oligodeoxynucleotides targeting SOCS3 exacerbated the atherosclerotic process in apoE−/− mice by increasing the size, leukocyte content, and chemokine expression in the lesions. Conclusions—SOCS expressed in atherosclerotic lesions are key regulators of vascular cell responses. Activation of this endogenous antiinflammatory pathway might be of interest in the treatment of atherosclerosis.
Arteriosclerosis, Thrombosis, and Vascular Biology | 2006
José Luis Martín-Ventura; Valentin Nicolas; Xavier Houard; Luis Miguel Blanco-Colio; Anne Leclercq; Jesús Egido; Roger Vranckx; Jean-Baptiste Michel; Olivier Meilhac
Objective—Because culprit atherosclerotic plaques contain proteases, we hypothesized that the diminished heat shock protein 27 (HSP27) released by atherosclerotic plaques could be due to proteolysis. We assessed the role of HSP27 in human vascular smooth muscle cells (VSMCs) under proteolytic injury. Methods and Results—Active plasmin is present in culprit atherosclerotic plaques. Recombinant HSP27 was cleaved by plasmin and this effect was prevented by different inhibitors. Fragments and aggregated forms of HSP27 appeared after incubation of mammary control endarteries with plasmin. Coincubation of atherosclerotic plaques with recombinant HSP27 or mammary endarteries led to HSP27 proteolysis. After incubation of VSMCs with plasmin, HSP27 was overexpressed, phosphorylated, aggregated, and redistributed from the cytoskeleton to the cytosol, nucleus, and cell membrane. Plasmin-induced VSMC apoptosis was significantly higher in VSMCs treated by HSP27 siRNA. Immunohistochemical analysis of atherosclerotic plaques showed that plasmin(ogen) and apoptotic cells are localized in the core/shoulder whereas HSP27 and VSMCs are mainly expressed in the cap/media. Conclusions—Extracellular HSP27 can be degraded by enzymes released from atherosclerotic plaques and may reflect a proteolytic imbalance. Intracellular HSP27 downregulation decreases VSMCs resistance to proteolytically-induced apoptosis. HSP27 might play a pivotal role in the prevention of plaque instability and rupture.