José Luis Morgado-Pascual
Autonomous University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Luis Morgado-Pascual.
The Journal of Pathology | 2013
Sandra Rayego-Mateos; José Luis Morgado-Pascual; Ana Belen Sanz; Adrián M. Ramos; Satoru Eguchi; Daniel Batlle; János Pató; György Kéri; Jesús Egido; Alberto Ortiz; Marta Ruiz-Ortega
TWEAK, a member of the TNF superfamily, binds to the Fn14 receptor, eliciting biological responses. EGFR signalling is involved in experimental renal injury. Our aim was to investigate the relationship between TWEAK and EGFR in the kidney. Systemic TWEAK administration into C57BL/6 mice increased renal EGFR phosphorylation, mainly in tubular epithelial cells. In vitro, in these cells TWEAK phosphorylated EGFR via Fn14 binding, ADAM17 activation and subsequent release of the EGFR ligands HB‐EGF and TGFα. In vivo the EGFR kinase inhibitor Erlotinib inhibited TWEAK‐induced renal EGFR activation and downstream signalling, including ERK activation, up‐regulation of proinflammatory factors and inflammatory cell infiltration. Moreover, the ADAM17 inhibitor WTACE‐2 also prevented those TWEAK‐induced renal effects. In vitro TWEAK induction of proinflammatory factors was prevented by EGFR, ERK or ADAM17 inhibition. In contrast, EGFR transactivation did not modify TWEAK‐mediated NF‐κB activation. Our data suggest that TWEAK transactivates EGFR in the kidney, leading to modulation of downstream effects, including ERK activation and inflammation, and suggest that inhibition of EGFR signalling could be a novel therapeutic tool for renal inflammation. Copyright
Journal of Molecular Cell Biology | 2013
Sandra Rayego-Mateos; Raquel Rodrigues-Díez; José Luis Morgado-Pascual; Raúl Rodrigues Díez; Sebastian Mas; Carolina Lavoz; Matilde Alique; János Pató; György Kéri; Alberto Ortiz; Jesús Egido; Marta Ruiz-Ortega
Chronic kidney disease is reaching epidemic proportions worldwide and there is no effective treatment. Connective tissue growth factor (CCN2) has been suggested as a risk biomarker and a potential therapeutic target for renal diseases, but its specific receptor has not been identified. Epidermal growth factor receptor (EGFR) participates in kidney damage, but whether CCN2 activates the EGFR pathway is unknown. Here, we show that CCN2 is a novel EGFR ligand. CCN2 binding to EGFR extracellular domain was demonstrated by surface plasmon resonance. CCN2 contains four distinct structural modules. The carboxyl-terminal module (CCN2(IV)) showed a clear interaction with soluble EGFR, suggesting that EGFR-binding site is located in this module. Injection of CCN2(IV) in mice increased EGFR phosphorylation in the kidney, mainly in tubular epithelial cells. EGFR kinase inhibition decreased CCN2(IV)-induced renal changes (ERK activation and inflammation). Studies in cultured tubular epithelial cells showed that CCN2(IV) binds to EGFR leading to ERK activation and proinflammatory factors overexpression. CCN2 interacts with the neurotrophin receptor TrkA, and EGFR/TrkA receptor crosstalk was found in response to CCN2(IV) stimulation. Moreover, endogenous CCN2 blockade inhibited TGF-β-induced EGFR activation. These findings indicate that CCN2 is a novel EGFR ligand that contributes to renal damage through EGFR signalling.
Journal of The American Society of Nephrology | 2017
Beatriz Suarez-Alvarez; José Luis Morgado-Pascual; Sandra Rayego-Mateos; Ramón María Alvargonzález Rodríguez; Raúl R. Rodrigues-Diez; Pablo Cannata-Ortiz; Ana Belen Sanz; Jesús Egido; Pierre-Louis Tharaux; Alberto Ortiz; Carlos López-Larrea; Marta Ruiz-Ortega
Renal inflammation has a key role in the onset and progression of immune- and nonimmune-mediated renal diseases. Therefore, the search for novel anti-inflammatory pharmacologic targets is of great interest in renal pathology. JQ1, a small molecule inhibitor of bromodomain and extraterminal (BET) proteins, was previously found to preserve renal function in experimental polycystic kidney disease. We report here that JQ1-induced BET inhibition modulated the in vitro expression of genes involved in several biologic processes, including inflammation and immune responses. Gene silencing of BRD4, an important BET protein, and chromatin immunoprecipitation assays showed that JQ1 alters the direct association of BRD4 with acetylated histone-packaged promoters and reduces the transcription of proinflammatory genes (IL-6, CCL-2, and CCL-5). In vivo, JQ1 abrogated experimental renal inflammation in murine models of unilateral ureteral obstruction, antimembrane basal GN, and infusion of Angiotensin II. Notably, JQ1 downregulated the expression of several genes controlled by the NF-κB pathway, a key inflammatory signaling pathway. The RelA NF-κB subunit is activated by acetylation of lysine 310. In damaged kidneys and cytokine-stimulated renal cells, JQ1 reduced the nuclear levels of RelA NF-κB. Additionally, JQ1 dampened the activation of the Th17 immune response in experimental renal damage. Our results show that inhibition of BET proteins reduces renal inflammation by several mechanisms: chromatin remodeling in promoter regions of specific genes, blockade of NF-κB pathway activation, and modulation of the Th17 immune response. These results suggest that inhibitors of BET proteins could have important therapeutic applications in inflammatory renal diseases.
BioMed Research International | 2015
José Luis Morgado-Pascual; Sandra Rayego-Mateos; Jose M. Valdivielso; Alberto Ortiz; Jesús Egido; Marta Ruiz-Ortega
Chronic kidney disease is characterized by Vitamin D deficiency and activation of the renin-angiotensin-aldosterone system. Increasing data show that vitamin D receptor agonists (VDRAs) exert beneficial effects in renal disease and possess anti-inflammatory properties, but the underlying mechanism remains unknown. Emerging evidence suggests that “a disintegrin and metalloproteinase” (ADAM)/epidermal growth factor receptor (EGFR) signalling axis contributes to renal damage. Aldosterone induces EGFR transactivation regulating several processes including cell proliferation and fibrosis. However, data on tubular epithelial cells is scarce. We have found that, in cultured tubular epithelial cells, aldosterone induced EGFR transactivation via TGF-α/ADAM17. Blockade of the TGF-α/ADAM17/EGFR pathway inhibited aldosterone-induced proinflammatory gene upregulation. Moreover, among the potential downstream mechanisms, we found that TGF-α/ADAM17/EGFR inhibition blocked ERK and STAT-1 activation in response to aldosterone. Next, we investigated the involvement of TGF-α/ADAM17/EGFR axis in VDRA anti-inflammatory effects. Preincubation with the VDRA paricalcitol inhibited aldosterone-induced EGFR transactivation, TGF-α/ADAM-17 gene upregulation, and downstream mechanisms, including proinflammatory factors overexpression. In conclusion, our data suggest that the anti-inflammatory actions of paricalcitol in tubular cells could depend on the inhibition of TGF-α/ADAM17/EGFR pathway in response to aldosterone, showing an important mechanism of VDRAs action.
The Journal of Pathology | 2018
Sandra Rayego-Mateos; José Luis Morgado-Pascual; Raúl R. Rodrigues-Diez; Raquel Rodrigues-Díez; Lucas L. Falke; Sergio Mezzano; Alberto Ortiz; Jesús Egido; Roel Goldschmeding; Marta Ruiz-Ortega
Connective tissue growth factor (CCN2/CTGF) is a matricellular protein that is overexpressed in progressive human renal diseases, mainly in fibrotic areas. In vitro studies have demonstrated that CCN2 regulates the production of extracellular matrix (ECM) proteins and epithelial–mesenchymal transition (EMT), and could therefore contribute to renal fibrosis. CCN2 blockade ameliorates experimental renal damage, including diminution of ECM accumulation. We have reported that CCN2 and its C‐terminal degradation product CCN2(IV) bind to epidermal growth factor receptor (EGFR) to modulate renal inflammation. However, the receptor involved in CCN2 profibrotic actions has not been described so far. Using a murine model of systemic administration of CCN2(IV), we have unveiled a fibrotic response in the kidney that was diminished by EGFR blockade. Additionally, in conditional CCN2 knockout mice, renal fibrosis elicited by folic acid‐induced renal damage was prevented, and this was linked to inhibition of EGFR pathway activation. Our in vitro studies demonstrated a direct effect of CCN2 via the EGFR pathway on ECM production by fibroblasts and the induction of EMT in tubular epithelial cells. Our studies clearly show that the EGFR regulates CCN2 fibrotic signalling in the kidney, and suggest that EGFR pathway blockade could be a potential therapeutic option to block CCN2‐mediated profibrotic effects in renal diseases. Copyright
The Journal of Pathology | 2018
Cristian González-Guerrero; José Luis Morgado-Pascual; Pablo Cannata-Ortiz; María Angeles Ramos-Barron; Carlos Gómez-Alamillo; Arias M; Sergio Mezzano; Jesús Egido; Marta Ruiz-Ortega; Alberto Ortiz; Adrián M. Ramos
The chemokine CCL20 activates the CCR6 receptor and has been implicated in the pathogenesis of glomerular injury. However, it is unknown whether it contributes to acute kidney injury (AKI). We identified CCL20 as upregulated in a systems biology strategy combining transcriptomics of kidney tissue from experimental toxic folic acid‐induced AKI and from stressed cultured tubular cells and have explored the expression and function of CCL20 in experimental and clinical AKI. CCL20 upregulation was confirmed in three models of kidney injury induced by a folic acid overdose, cisplatin or unilateral ureteral obstruction. In injured kidneys, CCL20 was expressed by tubular, endothelial, and interstitial cells, and was also upregulated in human kidneys with AKI. Urinary CCL20 was increased in human AKI and was associated with severity. The function of CCL20 in nephrotoxic folic acid‐induced AKI was assessed by using neutralising anti‐CCL20 antibodies or CCR6‐deficient mice. CCL20/CCR6 targeting increased the severity of kidney failure and mortality. This was associated with more severe histological injury, nephrocalcinosis, capillary rarefaction, and fibrosis, as well as higher expression of tubular injury‐associated genes. Surprisingly, mice with CCL20 blockade had a lower tubular proliferative response and a higher number of cells in the G2/M phase, suggesting impaired repair mechanisms. This may be related to a lower influx of Tregs, despite a milder inflammatory response in terms of chemokine expression and infiltration by IL‐17+ cells and neutrophils. In conclusion, CCL20 has a nephroprotective role during AKI, both by decreasing tissue injury and by facilitating repair. Copyright
Nefrologia | 2018
Laura Marquez-Exposito; Elena Cantero-Navarro; Carolina Lavoz; Marta Fierro-Fernández; Jonay Poveda; Sandra Rayego-Mateos; Raúl R. Rodrigues-Diez; José Luis Morgado-Pascual; Macarena Orejudo; Sergio Mezzano; Marta Ruiz-Ortega
Nefrologia | 2018
Laura Marquez-Exposito; Elena Cantero-Navarro; Carolina Lavoz; Marta Fierro-Fernández; Jonay Poveda; Sandra Rayego-Mateos; Raúl R. Rodrigues-Diez; José Luis Morgado-Pascual; Macarena Orejudo; Sergio Mezzano; Marta Ruiz-Ortega
Nephrology Dialysis Transplantation | 2017
Sandra Rayego-Mateos; José Luis Morgado-Pascual; Roel Goldschmeding; Ana Belen Sanz; Jesus Egido de los Rios; Alberto Ortiz; Marta Ruiz-Ortega
Nephrology Dialysis Transplantation | 2016
Macarena Orejudo; Ana B. García-Redondo; Raúl R. Rodrigues-Diez; Raquel Rodrigues-Díez; Sandra Rayego-Mateos; José Luis Morgado-Pascual; Mercedes Salaices; Jesús Egido; Ana M. Briones; Marta Ruiz-Ortega