Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Luis Sanchez-Lopez is active.

Publication


Featured researches published by Jose Luis Sanchez-Lopez.


advances in computing and communications | 2014

Computer vision based general object following for GPS-denied multirotor unmanned vehicles

Jesús Pestana; Jose Luis Sanchez-Lopez; Srikanth Saripalli; Pascual Campoy

The motivation of this research is to show that visual based object tracking and following is reliable using a cheap GPS-denied multirotor platform such as the AR Drone 2.0. Our architecture allows the user to specify an object in the image that the robot has to follow from an approximate constant distance. At the current stage of our development, in the event of image tracking loss the system starts to hover and waits for the image tracking recovery or second detection, which requires the usage of odometry measurements for self stabilization. During the following task, our software utilizes the forward-facing camera images and part of the IMU data to calculate the references for the four on-board low-level control loops. To obtain a stronger wind disturbance rejection and an improved navigation performance, a yaw heading reference based on the IMU data is internally kept and updated by our control algorithm. We validate the architecture using an AR Drone 2.0 and the OpenTLD tracker in outdoor suburban areas. The experimental tests have shown robustness against wind perturbations, target occlusion and illumination changes, and the systems capability to track a great variety of objects present on suburban areas, for instance: walking or running people, windows, AC machines, static and moving cars and plants.


international symposium on safety, security, and rescue robotics | 2013

Vision based GPS-denied Object Tracking and following for unmanned aerial vehicles

Jesús Pestana; Jose Luis Sanchez-Lopez; Pascual Campoy; Srikanth Saripalli

We present a vision based control strategy for tracking and following objects using an Unmanned Aerial Vehicle. We have developed an image based visual servoing method that uses only a forward looking camera for tracking and following objects from a multi-rotor UAV, without any dependence on GPS systems. Our proposed method tracks a user specified object continuously while maintaining a fixed distance from the object and also simultaneously keeping it in the center of the image plane. The algorithm is validated using a Parrot AR Drone 2.0 in outdoor conditions while tracking and following people, occlusions and also fast moving objects; showing the robustness of the proposed systems against perturbations and illumination changes. Our experiments show that the system is able to track a great variety of objects present in suburban areas, among others: people, windows, AC machines, cars and plants.


Journal of Intelligent and Robotic Systems | 2014

An Approach Toward Visual Autonomous Ship Board Landing of a VTOL UAV

Jose Luis Sanchez-Lopez; Jesús Pestana; Srikanth Saripalli; Pascual Campoy

We present the design and implementation of a vision based autonomous landing algorithm using a downward looking camera. To demonstrate the efficacy of our algorithms we emulate the dynamics of the ship-deck, for various sea states and different ships using a six degrees of freedom motion platform. We then present the design and implementation of our robust computer vision system to measure the pose of the shipdeck with respect to the vehicle. A Kalman filter is used in conjunction with our vision system to ensure the robustness of the estimates. We demonstrate the accuracy and robustness of our system to occlusions, variation in intensity, etc. using our testbed.


Sensors | 2015

Automated Low-Cost Smartphone-Based Lateral Flow Saliva Test Reader for Drugs-of-Abuse Detection.

Adrian Carrio; Carlos Sampedro; Jose Luis Sanchez-Lopez; Miguel Pimienta; Pascual Campoy

Lateral flow assay tests are nowadays becoming powerful, low-cost diagnostic tools. Obtaining a result is usually subject to visual interpretation of colored areas on the test by a human operator, introducing subjectivity and the possibility of errors in the extraction of the results. While automated test readers providing a result-consistent solution are widely available, they usually lack portability. In this paper, we present a smartphone-based automated reader for drug-of-abuse lateral flow assay tests, consisting of an inexpensive light box and a smartphone device. Test images captured with the smartphone camera are processed in the device using computer vision and machine learning techniques to perform automatic extraction of the results. A deep validation of the system has been carried out showing the high accuracy of the system. The proposed approach, applicable to any line-based or color-based lateral flow test in the market, effectively reduces the manufacturing costs of the reader and makes it portable and massively available while providing accurate, reliable results.


Journal of Intelligent and Robotic Systems | 2016

A Reliable Open-Source System Architecture for the Fast Designing and Prototyping of Autonomous Multi-UAV Systems: Simulation and Experimentation

Jose Luis Sanchez-Lopez; Jesús Pestana; Paloma de la Puente; Pascual Campoy

During the process of design and development of an autonomous Multi-UAV System, two main problems appear. The first one is the difficulty of designing all the modules and behaviors of the aerial multi-robot system. The second one is the difficulty of having an autonomous prototype of the system for the developers that allows to test the performance of each module even in an early stage of the project. These two problems motivate this paper. A multipurpose system architecture for autonomous multi-UAV platforms is presented. This versatile system architecture can be used by the system designers as a template when developing their own systems. The proposed system architecture is general enough to be used in a wide range of applications, as demonstrated in the paper. This system architecture aims to be a reference for all designers. Additionally, to allow for the fast prototyping of autonomous multi-aerial systems, an Open Source framework based on the previously defined system architecture is introduced. It allows developers to have a flight proven multi-aerial system ready to use, so that they can test their algorithms even in an early stage of the project. The implementation of this framework, introduced in the paper with the name of “CVG Quadrotor Swarm”, which has also the advantages of being modular and compatible with different aerial platforms, can be found at https://github.com/Vision4UAV/cvg_quadrotor_swarm with a consistent catalog of available modules. The good performance of this framework is demonstrated in the paper by choosing a basic instance of it and carrying out simulation and experimental tests whose results are summarized and discussed in this paper.


international conference on unmanned aircraft systems | 2016

Natural user interfaces for human-drone multi-modal interaction

Ramón Suárez Fernández; Jose Luis Sanchez-Lopez; Carlos Sampedro; Hriday Bavle; Martin Molina; Pascual Campoy

Personal drones are becoming part of every day life. To fully integrate them into society, it is crucial to design safe and intuitive ways to interact with these aerial systems. The recent advances on User-Centered Design (UCD) applied to Natural User Interfaces (NUIs) intend to make use of human innate features, such as speech, gestures and vision to interact with technology in the way humans would with one another. In this paper, a Graphical User Interface (GUI) and several NUI methods are studied and implemented, along with computer vision techniques, in a single software framework for aerial robotics called Aerostack which allows for intuitive and natural human-quadrotor interaction in indoor GPS-denied environments. These strategies include speech, body position, hand gesture and visual marker interactions used to directly command tasks to the drone. The NUIs presented are based on devices like the Leap Motion Controller, microphones and small size monocular on-board cameras which are unnoticeable to the user. Thanks to this UCD perspective, the users can choose the most intuitive and effective type of interaction for their application. Additionally, the strategies proposed allow for multi-modal interaction between multiple users and the drone by being able to integrate several of these interfaces in one single application as is shown in various real flight experiments performed with non-expert users.


international conference on unmanned aircraft systems | 2013

Toward visual autonomous ship board landing of a VTOL UAV

Jose Luis Sanchez-Lopez; Srikanth Saripalli; Pascual Campoy; Jesús Pestana; Changhong Fu

In this paper we tackle the problem of landing a helicopter autonomously on a ship deck, using as the main sensor, an on-board colour camera. To create a test-bed, we first adequately simulate the movement of a ship landing platform on the Sea, for different Sea States, for different ships, randomly and realistically enough. We use a commercial parallel robot to get this movement. Once we had this, we developed an accurate and robust computer vision system to measure the pose of the helipad with respect to the on-board camera. To deal with the noise and the possible fails of the computer vision, a state estimator was created. With all of this, we are now able to develop and test a controller that closes the loop and finish the autonomous landing task.


Journal of Intelligent and Robotic Systems | 2013

A Hierarchical Tracking Strategy for Vision-Based Applications On-Board UAVs

Carol Martinez; Iván F. Mondragón; Pascual Campoy; Jose Luis Sanchez-Lopez; Miguel A. Olivares-Mendez

In this paper, we apply a hierarchical tracking strategy of planar objects (or that can be assumed to be planar) that is based on direct methods for vision-based applications on-board UAVs. The use of this tracking strategy allows to achieve the tasks at real-time frame rates and to overcome problems posed by the challenging conditions of the tasks: e.g. constant vibrations, fast 3D changes, or limited capacity on-board. The vast majority of approaches make use of feature-based methods to track objects. Nonetheless, in this paper we show that although some of these feature-based solutions are faster, direct methods can be more robust under fast 3D motions (fast changes in position), some changes in appearance, constant vibrations (without requiring any specific hardware or software for video stabilization), and situations in which part of the object to track is outside of the field of view of the camera. The performance of the proposed tracking strategy on-board UAVs is evaluated with images from real-flight tests using manually-generated ground truth information, accurate position estimation using a Vicon system, and also with simulated data from a simulation environment. Results show that the hierarchical tracking strategy performs better than well-known feature-based algorithms and well-known configurations of direct methods, and that its performance is robust enough for vision-in-the-loop tasks, e.g. for vision-based landing tasks.


international conference on unmanned aircraft systems | 2016

AEROSTACK: An architecture and open-source software framework for aerial robotics

Jose Luis Sanchez-Lopez; Ramón Suárez Fernández; Hriday Bavle; Carlos Sampedro; Martin Molina; Jesús Pestana; Pascual Campoy

To simplify the usage of the Unmanned Aerial Systems (UAS), extending their use to a great number of applications, fully autonomous operation is needed. There are many open-source architecture frameworks for UAS that claim the autonomous operation of UAS, but they still have two main open issues: (1) level of autonomy, being in most of the cases limited and (2) versatility, being most of them designed specifically for some applications or aerial platforms. As a response to these needs and issues, this paper presents Aerostack, a system architecture and open-source multi-purpose software framework for autonomous multi-UAS operation. To provide higher degrees of autonomy, Aerostacks system architecture integrates state of the art concepts of intelligent, cognitive and social robotics, based on five layers: reactive, executive, deliberative, reflective, and social. To be a highly versatile practical solution, Aerostacks open-source software framework includes the main components to execute the architecture for fully autonomous missions of swarms of UAS; a collection of ready-to-use and flight proven modular components that can be reused by the users and developers; and compatibility with five well known aerial platforms, as well as a high number of sensors. Aerostack has been validated during three years by its successful use on many research projects, international competitions and exhibitions. To corroborate this fact, this paper also presents Aerostack carrying out a fictional fully autonomous indoors search and rescue mission.


international conference on unmanned aircraft systems | 2016

A flexible and dynamic mission planning architecture for UAV swarm coordination

Carlos Sampedro; Hriday Bavle; Jose Luis Sanchez-Lopez; Ramón Suárez Fernández; Alejandro Rodriguez-Ramos; Martin Molina; Pascual Campoy

In this paper a scalable and flexible Architecture for real-time mission planning and dynamic agent-to-task assignment for a swarm of Unmanned Aerial Vehicles (UAV) is presented. The proposed mission planning architecture consists of a Global Mission Planner (GMP) which is responsible of assigning and monitoring different high-level missions through an Agent Mission Planner (AMP), which is in charge of providing and monitoring each task of the mission to each UAV in the swarm. The objective of the proposed architecture is to carry out high-level missions such as autonomous multi-agent exploration, automatic target detection and recognition, search and rescue, and other different missions with the ability of dynamically re-adapt the mission in real-time. The proposed architecture has been evaluated in simulation and real indoor flights demonstrating its robustness in different scenarios and its flexibility for real-time mission re-planning and dynamic agent-to-task assignment.

Collaboration


Dive into the Jose Luis Sanchez-Lopez's collaboration.

Top Co-Authors

Avatar

Pascual Campoy

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Jesús Pestana

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Sampedro

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Hriday Bavle

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Martin Molina

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Adrian Carrio

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Changhong Fu

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ignacio Mellado-Bataller

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ramón Suárez Fernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alejandro Rodriguez-Ramos

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge