Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José-Luis Zambonino-Infante is active.

Publication


Featured researches published by José-Luis Zambonino-Infante.


Aquaculture | 1999

Development of digestive enzymes in larvae of Solea senegalensis, Kaup 1858

Laura Ribeiro; José-Luis Zambonino-Infante; Chantal Cahu; Maria Teresa Dinis

Abstract The activities of some digestive enzymes were studied in sole larvae fed live prey from first feeding until the first month of life. Whole larvae body homogenates were used for enzymatic determination in larvae younger than 21 days after hatching (DAH). Older larvae were dissected in order to obtain the pancreatic and intestinal segment. Brush border membranes of enterocytes were purified from intestinal segment. From 2 DAH to 18 DAH, activities of pancreatic and intestinal enzymes exhibited a pattern characteristic of developing animals: an increase during the first 10 days post-hatching, followed by a decrease. From 21 DAH to 27 DAH, the strong increase in alkaline phosphatase activity reflected the development of the brush border membranes of enterocytes, which occurred concurrently with a decrease in a cytosolic enzyme, leucine–alanine peptidase. These opposite patterns indicate a maturation of enterocytes and the acquisition of an adult mode of digestion.


Lipids | 2005

Dietary phospholipids are more efficient than neutral lipids for long-chain polyunsaturated fatty acid supply in European sea bass Dicentrarchus labrax larval development

Laure Villeneuve; José-Luis Zambonino-Infante; Patrick Quazuguel; Chantal Cahu

We evaluated the effects of dietary lipid class (phospholipid vs. neutral lipid) and level of n−3 long-chain PUFA (LC-PUFA) on the growth, digestive enzymatic activity, and histological organization of the intestine and liver in European sea bass larvae. Fish were fed from the onset of exogenous feeding at 7 to 37 d post-hatch with five isoproteic and isolipidic compound diets with different levels of EPA and DHA. Diet names indicated the percentage of EPA and DHA contained in the phospholipids (PL) and neutral lipids (NL), as follows: PL5, PL3, PL1, NL1, and NL3. Histological observations showed different patterns of lipid absorption and accumulation in the intestinal mucosa depending on the level and nature of the dietary lipid fraction. Fish fed high levels of neutral lipids (11%, NL3 diet: 2.6% of EPA+DHA in the NL fraction) showed large intracellular and intercellular lipid deposits in the anterior intestine, but no such lipid accumulation was detected when larvae were fed with low and moderate levels of EPA and DHA in the phospholipid and neutral lipid fractions of the diet (PL and NL1 diets). PL were preferentially absorbed in the postvalvular intestine, and the accumulation of marine PL was inversely correlated to their dietary level. The postvalvular intestinal mucosa and liver showed signs of steatosis; large lipid vacuoles were observed in this region of the intestine and in the liver and were inversely correlated with the level of dietary neutral lipids. The best results in terms of growth, survival, and development (maturation of the digestive system and histological organization of the liver and intestinal mucosa) were obtained in the group fed with 2.3% of EPA and DHA in the PL fraction of the diet (PL3 diet), revealing that European sea bass larvae use the LC-PUFa contained in the PL fraction more efficiently than those from the NL fraction of the diet.


Marine Environmental Research | 2015

Evaluation of the impact of polyethylene microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae

David Mazurais; Bruno Ernande; Patrick Quazuguel; Armelle Severe; Christine Huelvan; Lauriane Madec; Olivier Mouchel; Philippe Soudant; Johan Robbens; Arnaud Huvet; José-Luis Zambonino-Infante

Microplastics are present in marine habitats worldwide and may be ingested by low trophic organisms such as fish larvae, with uncertain physiological consequences. The present study aims at assessing the impact of polyethylene (PE 10-45 μM) microbeads ingestion in European sea bass (Dicentrarchus labrax) larvae. Fish were fed an inert diet including 0, 10(4) and 10(5) fluorescent microbeads per gram from 7 until 43 days post-hatching (dph). Microbeads were detected in the gastrointestinal tract in all fish fed diet incorporating PE. Our data revealed an efficient elimination of PE beads from the gut since no fluorescent was observed in the larvae after 48 h depuration. While the mortality rate increased significantly with the amount of microbeads scored per larvae at 14 and 20 dph, only ingestion of the highest concentration slightly impacted mortality rates. Larval growth and inflammatory response through Interleukine-1-beta (IL-1β) gene expression were not found to be affected while cytochrome-P450-1A1 (cyp1a1) expression level was significantly positively correlated with the number of microbeads scored per larva at 20 dph. Overall, these results suggest that ingestion of PE microbeads had limited impact on sea bass larvae possibly due to their high potential of egestion.


Comparative Biochemistry and Physiology B | 2010

Regulation of FADS2 expression and activity in European sea bass (Dicentrarchus labrax, L.) fed a vegetable diet

Florian Geay; E. Santigosa I Culi; Charlotte Corporeau; Pierre Boudry; Y. Dreano; Laurent Corcos; N. Bodin; Marc Vandeputte; José-Luis Zambonino-Infante; David Mazurais; Chantal Cahu

Supplies of marine fish oils are limited, and continued growth in aquaculture production dictates that lipid substitutes in fish diets must be used without compromising fish health and product quality. In this study, the total substitution of a fish meal and fish oil by a blend of vegetable meals (corn, soybean, wheat and lupin) and linseed oil in the diet of European sea bass (Dicentrachus labrax) was investigated. Two groups of European sea bass were fed with fish diet (FD) or vegetable diet (VD) for 9months. VD, totally deprived of eicosapentaenoate (EPA; 20:5n-3) and docosahexaenoate (DHA; 22:6n-3), revealed a nutritional deficiency and affected growth performance. Whilst VD induced a significant increase in fatty acid desaturase 2 (FADS2) and sterol binding regulatory element-binding protein 1 (SREBP-1) mRNA levels, the desaturation rate of [1-(14)C]18:3n-3 into [1-(14)C]18:4n-3, analysed in microsomal preparations using HPLC method, did not show an upregulation of FADS2 activities in liver and intestine of fish fed VD. Moreover Western-blot analysis did not revealed any significant difference of FADS2 protein amount between the two dietary groups. These data demonstrate that sea bass exhibits a desaturase (FADS2) activity whatever their diet, but a post-transcriptional regulation of fads2 RNA prevents an increase of enzyme in fish fed a HUFA-free diet. This led to a lower fish growth and poor muscle HUFA content.


The Journal of Experimental Biology | 2014

High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout

Inge Geurden; Jan A. Mennigen; Elisabeth Plagnes-Juan; Vincent Veron; T. Cerezo; David Mazurais; José-Luis Zambonino-Infante; J. Gatesoupe; Sandrine Skiba-Cassy; Stéphane Panserat

Based on the concept of nutritional programming in mammals, we tested whether an acute hyperglucidic–hypoproteic stimulus during first feeding could induce long-term changes in nutrient metabolism in rainbow trout. Trout alevins received during the five first days of exogenous feeding either a hyperglucidic (40% gelatinized starch + 20% glucose) and hypoproteic (20%) diet (VLP diet) or a high-protein (60%) glucose-free diet (HP diet, control). Following a common 105-day period on a commercial diet, both groups were then challenged (65 days) with a carbohydrate-rich diet (28%). Short- and long-term effects of the early stimuli were evaluated in terms of metabolic marker gene expressions and intestinal microbiota as initial gut colonisation is essential for regulating the development of the digestive system. In whole alevins (short term), diet VLP relative to HP rapidly increased gene expressions of glycolytic enzymes, while those involved in gluconeogenesis and amino acid catabolism decreased. However, none of these genes showed persistent molecular adaptation in the liver of challenged juveniles (long term). By contrast, muscle of challenged juveniles subjected previously to the VLP stimulus displayed downregulated expression of markers of glycolysis and glucose transport (not seen in the short term). These fish also had higher plasma glucose (9 h postprandial), suggesting impaired glucose homeostasis induced by the early stimulus. The early stimulus did not modify the expression of the analysed metabolism-related microRNAs, but had short- and long-term effects on intestinal fungi (not bacteria) profiles. In summary, our data show that a short hyperglucidic–hypoproteic stimulus during early life may have a long-term influence on muscle glucose metabolism and intestinal microbiota in trout.


Aquatic Toxicology | 2016

Assessing chronic fish health: An application to a case of an acute exposure to chemically treated crude oil

Florian Mauduit; Paolo Domenici; Anthony P. Farrell; Camille Lacroix; S. Le Floch; Philippe Lemaire; A. Nicolas-Kopec; M. Whittington; José-Luis Zambonino-Infante; Guy Claireaux

Human alteration of marine ecosystems is substantial and growing. Yet, no adequate methodology exists that provides reliable predictions of how environmental degradation will affect these ecosystems at a relevant level of biological organization. The primary objective of this study was to develop a methodology to evaluate a fishs capacity to face a well-established environmental challenge, an exposure to chemically dispersed oil, and characterize the long-term consequences. Therefore, we applied high-throughput, non-lethal challenge tests to assess hypoxia tolerance, temperature susceptibility and maximal swimming speed as proxies for a fishs functional integrity. These whole animal challenge tests were implemented before (1 month) and after (1 month) juvenile European sea bass (Dicentrarchus labrax) had been acutely exposed (48h) to a mixture containing 0.08gL(-1) of weathered Arabian light crude oil plus 4% dispersant (Corexit© EC9500A), a realistic exposure concentration during an oil spill. In addition, experimental populations were then transferred into semi-natural tidal mesocosm ponds and correlates of Darwinian fitness (growth and survival) were monitored over a period of 4 months. Our results revealed that fish acutely exposed to chemically dispersed oil remained impaired in terms of their hypoxia tolerance and swimming performance, but not in temperature susceptibility for 1 month post-exposure. Nevertheless, these functional impairments had no subsequent ecological consequences under mildly selective environmental conditions since growth and survival were not impacted during the mesocosm pond study. Furthermore, the earlier effects on fish performance were presumably temporary because re-testing the fish 10 months post-exposure revealed no significant residual effects on hypoxia tolerance, temperature susceptibility and maximal swimming speed. We propose that the functional proxies and correlates of Darwinian fitness used here provide a useful assessment tool for fish health in the marine environment.


Marine Biotechnology | 2014

Identification of Hypoxia-Regulated Genes in the Liver of Common Sole (Solea solea ) Fed Different Dietary Lipid Contents

David Mazurais; Serena Ferraresso; Pier Paolo Gatta; Elisabeth Desbruyeres; Armelle Severe; Charlotte Corporeau; Guy Claireaux; Luca Bargelloni; José-Luis Zambonino-Infante

Coastal systems could be affected by hypoxic events brought about by global change. These areas are essential nursery habitats for several fish species including the common sole (Solea solea L.). Tolerance of fish to hypoxia depends on species and also on their physiological condition and nutritional status. Indeed, high dietary lipid content has been recently shown to negatively impact the resistance of sole to a severe hypoxic challenge. In order to study the molecular mechanisms involved in the early response to hypoxic stress, the present work examined the hepatic transcriptome in common sole fed diets with low and high lipid content, exposed to severe hypoxia. The activity of AMP-activated protein kinase (AMPK) was also investigated through the quantification of threonine-172 phosphorylation in the alpha subunit. The results show that hypoxia consistently regulates several actors involved in energy metabolism pathways and particularly AMPKα, as well as some involved in cell growth and maintenance or unfolded protein response. Our findings reveal that (1) the expression of genes involved in biological processes with high energy cost or implicated in aerobic ATP synthesis was down-regulated by hypoxia, contrary to genes involved in neoglucogenesis or in angiogenesis, (2) the consumption of high lipid induced regulation of metabolic pathways going against this energy saving, and (3) this control was fine-tuned by the regulation of several transcriptomic factors. These results provide insight into the biological processes involved in the hepatic response to hypoxic stress and underline the negative impact of high lipid consumption on the tolerance of common sole to hypoxia.


PLOS ONE | 2017

Temperature effects on gene expression and morphological development of European eel, Anguilla anguilla larvae

Sebastian Nikitas Politis; David Mazurais; Arianna Servili; José-Luis Zambonino-Infante; Joanna J. Miest; Sune Riis Sørensen; Jonna Tomkiewicz; Ian Butts

Temperature is important for optimization of rearing conditions in aquaculture, especially during the critical early life history stages of fish. Here, we experimentally investigated the impact of temperature (16, 18, 20, 22 and 24°C) on thermally induced phenotypic variability, from larval hatch to first-feeding, and the linked expression of targeted genes [heat shock proteins (hsp), growth hormone (gh) and insulin-like growth factors (igf)] associated to larval performance of European eel, Anguilla anguilla. Temperature effects on larval morphology and gene expression were investigated throughout early larval development (in real time from 0 to 18 days post hatch) and at specific developmental stages (hatch, jaw/teeth formation, and first-feeding). Results showed that hatch success, yolk utilization efficiency, survival, deformities, yolk utilization, and growth rates were all significantly affected by temperature. In real time, increasing temperature from 16 to 22°C accelerated larval development, while larval gene expression patterns (hsp70, hsp90, gh and igf-1) were delayed at cold temperatures (16°C) or accelerated at warm temperatures (20–22°C). All targeted genes (hsp70, hsp90, gh, igf-1, igf-2a, igf-2b) were differentially expressed during larval development. Moreover, expression of gh was highest at 16°C during the jaw/teeth formation, and the first-feeding developmental stages, while expression of hsp90 was highest at 22°C, suggesting thermal stress. Furthermore, 24°C was shown to be deleterious (resulting in 100% mortality), while 16°C and 22°C (~50 and 90% deformities respectively) represent the lower and upper thermal tolerance limits. In conclusion, the high survival, lowest incidence of deformities at hatch, high yolk utilization efficiency, high gh and low hsp expression, suggest 18°C as the optimal temperature for offspring of European eel. Furthermore, our results suggest that the still enigmatic early life history stages of European eel may inhabit the deeper layer of the Sargasso Sea and indicate vulnerability of this critically endangered species to increasing ocean temperature.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2016

Abundance of specific mRNA transcripts impacts hatching success in European eel, Anguilla anguilla L

Christoffer Rozenfeld; Ian Butts; Jonna Tomkiewicz; José-Luis Zambonino-Infante; David Mazurais

Maternal mRNA governs early embryonic development in fish and variation in abundance of maternal transcripts may contribute to variation in embryonic survival and hatch success in European eel, Anguilla anguilla. Previous studies have shown that quantities of the maternal gene products β-tubulin, insulin-like growth factor 2 (igf2), nucleoplasmin (npm2), prohibitin 2 (phb2), phosphatidylinositol glycan biosynthesis class F protein 5 (pigf5), and carnitine O-palmitoyltransferase liver isoform-like 1 (cpt1) are associated with embryonic developmental competence in other teleosts. Here, the relations between relative mRNA abundance of these genes in eggs and/or embryos and egg quality, was studied and analyzed. We compared egg quality of the two groups: i) batches with hatching and ii) batches with no hatching. Results showed no significant differences in relative mRNA abundance between the hatch and no hatching groups for any of the selected genes at 0, 2.5, and 5HPF. However, at 30HPF the hatch group showed significantly higher abundance of cpt1a, cpt1b, β-tubulin, phb2, and pigf5 transcripts than the no hatch group. Therefore, these results indicate that up-regulation of the transcription of these genes in European eel after the mid-blastula transition, may be needed to sustain embryonic development and hatching success.


Comparative Biochemistry and Physiology B | 2018

Metabolic response to hypoxia in European sea bass (Dicentrarchus labrax) displays developmental plasticity

Laura Cadiz; José-Luis Zambonino-Infante; Patrick Quazuguel; Lauriane Madec; Hervé Le Delliou; David Mazurais

Several physiological functions in fish are shaped by environmental stimuli received during early life. In particular, early-life hypoxia has been reported to have long-lasting effects on fish metabolism, with potential consequences for fish life history traits. In the present study, we examine whether the synergistic stressors hypoxia (40% and 100% air saturation) and temperature (15° and 20°C), encountered during early life, could condition later metabolic response in European sea bass (Dicentrarchus labrax) juveniles. Growth rate and metabolic parameters related to carbohydrate and lipid metabolism in the liver were investigated at the juvenile stage under normoxic and chronic hypoxic conditions. Juvenile growth rates were significantly lower (p<1×10-6) under hypoxic conditions and were not improved by prior early-life exposure to hypoxia. Growth was 1.3 times higher (p<5×10-3) in juveniles reared at 15°C during the larval stage than those reared at 20°C, suggesting that compensatory growth had occurred. Early-life exposure to hypoxia induced higher (p<2×10-6) glycogen stores in juveniles even though there was no apparent regulation of their carbohydrate metabolism. In the liver of juveniles exposed to chronic hypoxia, lower glycogen content combined with stimulation of phosphoenolpyruvate carboxykinase gene expression and higher lactate concentration indicated a stimulation of the anaerobic glycolytic pathway. Furthermore, hypoxia only induced lower (p<1×10-3) lipid content in the liver of juveniles that had experienced 15°C at the larval stage. The present study provides evidence that environmental conditions experienced during early life shape the metabolic traits of D. labrax with potential consequences for juvenile physiological performance.

Collaboration


Dive into the José-Luis Zambonino-Infante's collaboration.

Top Co-Authors

Avatar

Ian Butts

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jonna Tomkiewicz

Leibniz Institute of Marine Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge