Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jose Luiz Proenca-Modena is active.

Publication


Featured researches published by Jose Luiz Proenca-Modena.


Nature Medicine | 2015

The TAM receptor Mertk protects against neuroinvasive viral infection by maintaining blood-brain barrier integrity

Jonathan J. Miner; Brian P. Daniels; Bimmi Shrestha; Jose Luiz Proenca-Modena; Erin D. Lew; Helen M. Lazear; Matthew J. Gorman; Greg Lemke; Robyn S. Klein; Michael S. Diamond

The TAM receptors Tyro3, Axl and Mertk are receptor tyrosine kinases that dampen host innate immune responses following engagement with their ligands Gas6 and Protein S, which recognize phosphatidylserine on apoptotic cells. In a form of apoptotic mimicry, many enveloped viruses display phosphatidylserine on the outer leaflet of their membranes, enabling TAM receptor activation and downregulation of antiviral responses. Accordingly, we hypothesized that a deficiency of TAM receptors would enhance antiviral responses and protect against viral infection. Unexpectedly, mice lacking Mertk and/or Axl, but not Tyro3, exhibited greater vulnerability to infection with neuroinvasive West Nile and La Crosse encephalitis viruses. This phenotype was associated with increased blood-brain barrier permeability, which enhanced virus entry into and infection of the brain. Activation of Mertk synergized with interferon-β to tighten cell junctions and prevent virus transit across brain microvascular endothelial cells. Because TAM receptors restrict pathogenesis of neuroinvasive viruses, these findings have implications for TAM antagonists that are currently in clinical development.


The Journal of Infectious Diseases | 2017

Specific Biomarkers Associated With Neurological Complications and Congenital Central Nervous System Abnormalities From Zika Virus–Infected Patients in Brazil

Yiu-Wing Kam; Juliana A. Leite; Fok-Moon Lum; Jeslin J. L. Tan; Bernett Lee; Carla C. Judice; Daniel Teixeira; Robert Andreata-Santos; Marco Aurélio Ramirez Vinolo; Rodrigo Nogueira Angerami; Mariangela Ribeiro Resende; André Ricardo Ribas Freitas; Eliana Amaral; Renato Passini Júnior; Maria Laura Costa; José P. Guida; Clarice Weis Arns; Luís Carlos de Souza Ferreira; Laurent Rénia; Jose Luiz Proenca-Modena; Lisa F. P. Ng; Fabio T. M. Costa

Summary The first systematic large-scale analysis of immune mediators reported in patients with Zika virus (ZIKV) infection. Several key immune mediators have been identified for the control of ZIKV pathogenesis. This will clarify the molecular mechanisms of ZIKV infection in patients.


Journal of Virology | 2015

Oropouche Virus Infection and Pathogenesis Are Restricted by MAVS, IRF-3, IRF-7, and Type I Interferon Signaling Pathways in Nonmyeloid Cells

Jose Luiz Proenca-Modena; Renata Sesti-Costa; Amelia K. Pinto; Justin M. Richner; Helen M. Lazear; Tiffany M. Lucas; Jennifer L. Hyde; Michael S. Diamond

ABSTRACT Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), beta interferon (IFN-β), or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR than in wild-type (WT) cells. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death, whereas WT congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre+ Ifnar f/f or LysM Cre+ Ifnar f/f) did not sustain enhanced disease with OROV or a selective (flox/flox) deletion La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar −/− mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar −/− bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV infection and tissue injury and suggest that IFN signaling in nonmyeloid cells contributes to the host defense against orthobunyaviruses. IMPORTANCE Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.


Journal of Virology | 2015

Human and Murine IFIT1 Proteins Do Not Restrict Infection of Negative-Sense RNA Viruses of the Orthomyxoviridae, Bunyaviridae, and Filoviridae Families

Amelia K. Pinto; Graham D. Williams; Kristy J. Szretter; James P. White; Jose Luiz Proenca-Modena; Gai Liu; Judith Olejnik; James D. Brien; Hideki Ebihara; Elke Mühlberger; Gaya K. Amarasinghe; Michael S. Diamond; Adrianus C. M. Boon

ABSTRACT Interferon-induced protein with tetratricopeptide repeats 1 (IFIT1) is a host protein with reported cell-intrinsic antiviral activity against several RNA viruses. The proposed basis for the activity against negative-sense RNA viruses is the binding to exposed 5′-triphosphates (5′-ppp) on the genome of viral RNA. However, recent studies reported relatively low binding affinities of IFIT1 for 5′-ppp RNA, suggesting that IFIT1 may not interact efficiently with this moiety under physiological conditions. To evaluate the ability of IFIT1 to have an impact on negative-sense RNA viruses, we infected Ifit1−/− and wild-type control mice and primary cells with four negative-sense RNA viruses (influenza A virus [IAV], La Crosse virus [LACV], Oropouche virus [OROV], and Ebola virus) corresponding to three distinct families. Unexpectedly, a lack of Ifit1 gene expression did not result in increased infection by any of these viruses in cell culture. Analogously, morbidity, mortality, and viral burdens in tissues were identical between Ifit1−/− and control mice after infection with IAV, LACV, or OROV. Finally, deletion of the human IFIT1 protein in A549 cells did not affect IAV replication or infection, and reciprocally, ectopic expression of IFIT1 in HEK293T cells did not inhibit IAV infection. To explain the lack of antiviral activity against IAV, we measured the binding affinity of IFIT1 for RNA oligonucleotides resembling the 5′ ends of IAV gene segments. The affinity for 5′-ppp RNA was approximately 10-fold lower than that for non-2′-O-methylated (cap 0) RNA oligonucleotides. Based on this analysis, we conclude that IFIT1 is not a dominant restriction factor against negative-sense RNA viruses. IMPORTANCE Negative-sense RNA viruses, including influenza virus and Ebola virus, have been responsible for some of the most deadly outbreaks in recent history. The host interferon response and induction of antiviral genes contribute to the control of infections by these viruses. IFIT1 is highly induced after virus infection and reportedly has antiviral activity against several RNA and DNA viruses. However, its role in restricting infection by negative-sense RNA viruses remains unclear. In this study, we evaluated the ability of IFIT1 to inhibit negative-sense RNA virus replication and pathogenesis both in vitro and in vivo. Detailed cell culture and animal studies demonstrated that IFIT1 is not a dominant restriction factor against three different families of negative-sense RNA viruses.


PLOS ONE | 2016

A Lipidomics Approach in the Characterization of Zika-Infected Mosquito Cells: Potential Targets for Breaking the Transmission Cycle

Carlos Fernando Odir Rodrigues Melo; Diogo Noin de Oliveira; Estela de Oliveira Lima; Tatiane Melina Guerreiro; Cibele Zanardi Esteves; Raissa Marques Beck; Marina Aiello Padilla; Guilherme Paier Milanez; Clarice Weis Arns; Jose Luiz Proenca-Modena; Jayme A. Souza-Neto; Rodrigo Ramos Catharino

Recent outbreaks of Zika virus in Oceania and Latin America, accompanied by unexpected clinical complications, made this infection a global public health concern. This virus has tropism to neural tissue, leading to microcephaly in newborns in a significant proportion of infected mothers. The clinical relevance of this infection, the difficulty to perform accurate diagnosis and the small amount of data in literature indicate the necessity of studies on Zika infection in order to characterize new biomarkers of this infection and to establish new targets for viral control in vertebrates and invertebrate vectors. Thus, this study aims at establishing a lipidomics profile of infected mosquito cells compared to a control group to define potential targets for viral control in mosquitoes. Thirteen lipids were elected as specific markers for Zika virus infection (Brazilian strain), which were identified as putatively linked to the intracellular mechanism of viral replication and/or cell recognition. Our findings bring biochemical information that may translate into useful targets for breaking the transmission cycle.


Frontiers in Microbiology | 2017

Serum Metabolic Alterations upon Zika Infection

Carlos Fernando Odir Rodrigues Melo; Jeany Delafiori; Diogo Noin de Oliveira; Tatiane Melina Guerreiro; Cibele Zanardi Esteves; Estela de Oliveira Lima; Victoria Pando-Robles; Rodrigo Ramos Catharino; Guilherme Paier Milanez; Gabriela Mansano do Nascimento; André Ricardo Ribas Freitas; Rodrigo Nogueira Angerami; Fabio T. M. Costa; Clarice Weis Arns; Mariangela Ribeiro Resende; Eliana Amaral; Renato Passini Júnior; Carolina C. Ribeiro-do-Valle; Helaine Milanez; Maria Luiza Moretti; Jose Luiz Proenca-Modena; Glaucia Maria Pastore; Kleber Yotsumoto Fertrin; Márcia Teixeira Garcia; Roseli Calil; João Roberto Bertini Junior; Giuliane J. Lajos; Maria Laura Costa; Marcos Tadeu Nolasco da Silva; Albina Altemani

Zika virus (ZIKV) infection has recently emerged as a major concern worldwide due to its strong association with nervous system malformation (microcephaly) of fetuses in pregnant women infected by the virus. Signs and symptoms of ZIKV infection are often mistaken with other common viral infections. Since transmission may occur through biological fluids exchange and coitus, in addition to mosquito bite, this condition is an important infectious disease. Thus, understanding the mechanism of viral infection has become an important research focus, as well as providing potential targets for assertive clinical diagnosis and quality screening for hemoderivatives. Within this context, the present work analyzed blood plasma from 79 subjects, divided as a control group and a ZIKV-infected group. Samples underwent direct-infusion mass spectrometry and statistical analysis, where eight markers related to the pathophysiological process of ZIKV infection were elected and characterized. Among these, Angiotensin (1-7) and Angiotensin I were upregulated under infection, showing an attempt to induce autophagy of the infected cells. However, this finding is concerning about hypertensive individuals under treatment with inhibitors of the Renin-Angiotensin System (RAS), which could reduce this response against the virus and exacerbate the symptoms of the infection. Moreover, one of the most abundant glycosphingolipids in the nervous tissue, Ganglioside GM2, was also elected in the present study as an infection biomarker. Considered an important pathogen receptor at membranes outer layer, this finding represents the importance of gangliosides for ZIKV infection and its association with brain tropism. Furthermore, a series of phosphatidylinositols were also identified as biomarkers, implying a significant role of the PI3K-AKT-mTOR Pathway in this mechanism. Finally, these pathways may also be understood as potential targets to be considered in pharmacological intervention studies on ZIKV infection management.


PLOS ONE | 2017

TLR3 is required for survival following Coxsackievirus B3 infection by driving T lymphocyte activation and polarization: The role of dendritic cells

Renata Sesti-Costa; Marcela Francozo; Grace Kelly Silva; Jose Luiz Proenca-Modena; João Santana da Silva

Type B coxsackievirus (CVB) is a common cause of acute and chronic myocarditis, meningitis and pancreatitis, often leading to heart failure and pancreatic deficiency. The polarization of CD4+ T lymphocytes and their cytokine milieu are key factors in the outcome of CVB-induced diseases. Thus, sensing the virus and driving the adaptive immune response are essential for the establishment of a protective immune response. TLR3 is a crucial virus recognition receptor that confers the host with resistance to CVB infection. In the current study, we found that TLR3 expression in dendritic cells plays a role in their activation upon CVB3 infection in vitro, as TLR3-deficient dendritic cells up-regulate CD80 and CD86 to a less degree than WT cells. Instead, they up-regulated the inhibitory molecule PD-L1 and secreted considerably lower levels of TNF-α and IL-10 and a higher level of IL-23. T lymphocyte proliferation in co-culture with CVB3-infected dendritic cells was increased by TLR3-expressing DCs and other cells. Furthermore, in the absence of TLR3, the T lymphocyte response was shifted toward a Th17 profile, which was previously reported to be deleterious for the host. TLR3-deficient mice were very susceptible to CVB3 infection, with increased pancreatic injury and extensive inflammatory infiltrate in the heart that was associated with uncontrolled viral replication. Adoptive transfer of TLR3+ dendritic cells slightly improved the survival of TLR-deficient mice following CVB3 infection. Therefore, our findings highlight the importance of TLR3 signaling in DCs and in other cells to induce activation and polarization of the CD4+ T lymphocyte response toward a Th1 profile and consequently for a better outcome of CVB3 infection. These data provide new insight into the immune-mediated mechanisms by which CVBs are recognized and cleared in order to prevent the development of myocarditis and pancreatitis and may contribute to the design of therapies for enteroviral infections.


Journal of Virology | 2016

Interferon-Regulatory Factor 5-Dependent Signaling Restricts Orthobunyavirus Dissemination to the Central Nervous System

Jose Luiz Proenca-Modena; Jennifer L. Hyde; Renata Sesti-Costa; Tiffany M. Lucas; Amelia K. Pinto; Justin M. Richner; Matthew J. Gorman; Helen M. Lazear; Michael S. Diamond

ABSTRACT Interferon (IFN)-regulatory factor 5 (IRF-5) is a transcription factor that induces inflammatory responses after engagement and signaling by pattern recognition receptors. To define the role of IRF-5 during bunyavirus infection, we evaluated Oropouche virus (OROV) and La Crosse virus (LACV) pathogenesis and immune responses in primary cells and in mice with gene deletions in Irf3, Irf5, and Irf7 or in Irf5 alone. Deletion of Irf3, Irf5, and Irf7 together resulted in uncontrolled viral replication in the liver and spleen, hypercytokinemia, extensive liver injury, and an early-death phenotype. Remarkably, deletion of Irf5 alone resulted in meningoencephalitis and death on a more protracted timeline, 1 to 2 weeks after initial OROV or LACV infection. The clinical signs in OROV-infected Irf5 −/− mice were associated with abundant viral antigen and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL)-positive cells in several regions of the brain. Circulating dendritic cell (DC) subsets in Irf5 −/− mice had higher levels of OROV RNA in vivo yet produced lower levels of type I IFN than wild-type (WT) cells. This result was supported by data obtained in vitro, since a deficiency of IRF-5 resulted in enhanced OROV infection and diminished type I IFN production in bone marrow-derived DCs. Collectively, these results indicate a key role for IRF-5 in modulating the host antiviral response in peripheral organs that controls bunyavirus neuroinvasion in mice. IMPORTANCE Oropouche virus (OROV) and La Crosse virus (LACV) are orthobunyaviruses that are transmitted by insects and cause meningitis and encephalitis in subsets of individuals in the Americas. Recently, we demonstrated that components of the type I interferon (IFN) induction pathway, particularly the regulatory transcription factors IRF-3 and IRF-7, have key protective roles during OROV infection. However, the lethality in Irf3 −/− Irf7 −/− (DKO) mice infected with OROV was not as rapid or complete as observed in Ifnar −/− mice, indicating that other transcriptional factors associated with an IFN response contribute to antiviral immunity against OROV. Here, we evaluated bunyavirus replication, tissue tropism, and cytokine production in primary cells and mice lacking IRF-5. We demonstrate an important role for IRF-5 in preventing neuroinvasion and the ensuing encephalitis caused by OROV and LACV.


Microbes and Infection | 2018

Zika virus: lessons learned in Brazil.

Jose Luiz Proenca-Modena; Guilherme Paier Milanez; Maria Laura Costa; Carla C. Judice; Fabio T. M. Costa

Zika virus (ZIKV) greatly impacted the international scientific and public health communities in the last two years due to its association with microcephaly and other neonatal alterations. This review will discuss lessons learned from viral pathogenesis, epidemiology and clinical findings observed during the ZIKV outbreak occurred between 2014 and 2016 in Brazil.


Drug Discovery Today | 2018

The A–Z of Zika drug discovery

Melina Mottin; Joyce V.V.B. Borba; Rodolpho C. Braga; Pedro H.M. Torres; Matheus C. Martini; Jose Luiz Proenca-Modena; Carla C. Judice; Fabio T. M. Costa; Sean Ekins; Alexander L. Perryman; Carolina H. Andrade

n n Despite the recent outbreak of Zika virus (ZIKV), there are still no approved treatments, and early-stage compounds are probably many years away from approval. A comprehensive A–Z review of the recent advances in ZIKV drug discovery efforts is presented, highlighting drug repositioning and computationally guided compounds, including discovered viral and host cell inhibitors. Promising ZIKV molecular targets are also described and discussed, as well as targets belonging to the host cell, as new opportunities for ZIKV drug discovery. All this knowledge is not only crucial to advancing the fight against the Zika virus and other flaviviruses but also helps us prepare for the next emerging virus outbreak to which we will have to respond.n n

Collaboration


Dive into the Jose Luiz Proenca-Modena's collaboration.

Top Co-Authors

Avatar

Fabio T. M. Costa

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar

Clarice Weis Arns

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carla C. Judice

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eliana Amaral

State University of Campinas

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge