Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Bioucas-Dias is active.

Publication


Featured researches published by José M. Bioucas-Dias.


IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | 2012

Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches

José M. Bioucas-Dias; Antonio Plaza; Nicolas Dobigeon; Mario Parente; Qian Du; Paul D. Gader; Jocelyn Chanussot

Imaging spectrometers measure electromagnetic energy scattered in their instantaneous field view in hundreds or thousands of spectral channels with higher spectral resolution than multispectral cameras. Imaging spectrometers are therefore often referred to as hyperspectral cameras (HSCs). Higher spectral resolution enables material identification via spectroscopic analysis, which facilitates countless applications that require identifying materials in scenarios unsuitable for classical spectroscopic analysis. Due to low spatial resolution of HSCs, microscopic material mixing, and multiple scattering, spectra measured by HSCs are mixtures of spectra of materials in a scene. Thus, accurate estimation requires unmixing. Pixels are assumed to be mixtures of a few materials, called endmembers. Unmixing involves estimating all or some of: the number of endmembers, their spectral signatures, and their abundances at each pixel. Unmixing is a challenging, ill-posed inverse problem because of model inaccuracies, observation noise, environmental conditions, endmember variability, and data set size. Researchers have devised and investigated many models searching for robust, stable, tractable, and accurate unmixing algorithms. This paper presents an overview of unmixing methods from the time of Keshava and Mustards unmixing tutorial to the present. Mixing models are first discussed. Signal-subspace, geometrical, statistical, sparsity-based, and spatial-contextual unmixing algorithms are described. Mathematical problems and potential solutions are described. Algorithm characteristics are illustrated experimentally.


IEEE Transactions on Image Processing | 2007

A New TwIST: Two-Step Iterative Shrinkage/Thresholding Algorithms for Image Restoration

José M. Bioucas-Dias; Mário A. T. Figueiredo

Iterative shrinkage/thresholding (1ST) algorithms have been recently proposed to handle a class of convex unconstrained optimization problems arising in image restoration and other linear inverse problems. This class of problems results from combining a linear observation model with a nonquadratic regularizer (e.g., total variation or wavelet-based regularization). It happens that the convergence rate of these 1ST algorithms depends heavily on the linear observation operator, becoming very slow when this operator is ill-conditioned or ill-posed. In this paper, we introduce two-step 1ST (TwIST) algorithms, exhibiting much faster convergence rate than 1ST for ill-conditioned problems. For a vast class of nonquadratic convex regularizers (lscrP norms, some Besov norms, and total variation), we show that TwIST converges to a minimizer of the objective function, for a given range of values of its parameters. For noninvertible observation operators, we introduce a monotonic version of TwIST (MTwIST); although the convergence proof does not apply to this scenario, we give experimental evidence that MTwIST exhibits similar speed gains over IST. The effectiveness of the new methods are experimentally confirmed on problems of image deconvolution and of restoration with missing samples.


IEEE Transactions on Image Processing | 2010

Fast Image Recovery Using Variable Splitting and Constrained Optimization

Manya V. Afonso; José M. Bioucas-Dias; Mário A. T. Figueiredo

We propose a new fast algorithm for solving one of the standard formulations of image restoration and reconstruction which consists of an unconstrained optimization problem where the objective includes an l2 data-fidelity term and a nonsmooth regularizer. This formulation allows both wavelet-based (with orthogonal or frame-based representations) regularization or total-variation regularization. Our approach is based on a variable splitting to obtain an equivalent constrained optimization formulation, which is then addressed with an augmented Lagrangian method. The proposed algorithm is an instance of the so-called alternating direction method of multipliers, for which convergence has been proved. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is faster than the current state of the art methods.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Hyperspectral Subspace Identification

José M. Bioucas-Dias; José M. P. Nascimento

Signal subspace identification is a crucial first step in many hyperspectral processing algorithms such as target detection, change detection, classification, and unmixing. The identification of this subspace enables a correct dimensionality reduction, yielding gains in algorithm performance and complexity and in data storage. This paper introduces a new minimum mean square error-based approach to infer the signal subspace in hyperspectral imagery. The method, which is termed hyperspectral signal identification by minimum error, is eigen decomposition based, unsupervised, and fully automatic (i.e., it does not depend on any tuning parameters). It first estimates the signal and noise correlation matrices and then selects the subset of eigenvalues that best represents the signal subspace in the least squared error sense. State-of-the-art performance of the proposed method is illustrated by using simulated and real hyperspectral images.


IEEE Transactions on Image Processing | 2011

An Augmented Lagrangian Approach to the Constrained Optimization Formulation of Imaging Inverse Problems

Manya V. Afonso; José M. Bioucas-Dias; Mário A. T. Figueiredo

We propose a new fast algorithm for solving one of the standard approaches to ill-posed linear inverse problems (IPLIP), where a (possibly nonsmooth) regularizer is minimized under the constraint that the solution explains the observations sufficiently well. Although the regularizer and constraint are usually convex, several particular features of these problems (huge dimensionality, nonsmoothness) preclude the use of off-the-shelf optimization tools and have stimulated a considerable amount of research. In this paper, we propose a new efficient algorithm to handle one class of constrained problems (often known as basis pursuit denoising) tailored to image recovery applications. The proposed algorithm, which belongs to the family of augmented Lagrangian methods, can be used to deal with a variety of imaging IPLIP, including deconvolution and reconstruction from compressive observations (such as MRI), using either total-variation or wavelet-based (or, more generally, frame-based) regularization. The proposed algorithm is an instance of the so-called alternating direction method of multipliers, for which convergence sufficient conditions are known; we show that these conditions are satisfied by the proposed algorithm. Experiments on a set of image restoration and reconstruction benchmark problems show that the proposed algorithm is a strong contender for the state-of-the-art.


IEEE Transactions on Geoscience and Remote Sensing | 2011

Sparse Unmixing of Hyperspectral Data

Marian-Daniel Iordache; José M. Bioucas-Dias; Antonio Plaza

Linear spectral unmixing is a popular tool in remotely sensed hyperspectral data interpretation. It aims at estimating the fractional abundances of pure spectral signatures (also called as endmembers) in each mixed pixel collected by an imaging spectrometer. In many situations, the identification of the end-member signatures in the original data set may be challenging due to insufficient spatial resolution, mixtures happening at different scales, and unavailability of completely pure spectral signatures in the scene. However, the unmixing problem can also be approached in semisupervised fashion, i.e., by assuming that the observed image signatures can be expressed in the form of linear combinations of a number of pure spectral signatures known in advance (e.g., spectra collected on the ground by a field spectroradiometer). Unmixing then amounts to finding the optimal subset of signatures in a (potentially very large) spectral library that can best model each mixed pixel in the scene. In practice, this is a combinatorial problem which calls for efficient linear sparse regression (SR) techniques based on sparsity-inducing regularizers, since the number of endmembers participating in a mixed pixel is usually very small compared with the (ever-growing) dimensionality (and availability) of spectral libraries. Linear SR is an area of very active research, with strong links to compressed sensing, basis pursuit (BP), BP denoising, and matching pursuit. In this paper, we study the linear spectral unmixing problem under the light of recent theoretical results published in those referred to areas. Furthermore, we provide a comparison of several available and new linear SR algorithms, with the ultimate goal of analyzing their potential in solving the spectral unmixing problem by resorting to available spectral libraries. Our experimental results, conducted using both simulated and real hyperspectral data sets collected by the NASA Jet Propulsion Laboratorys Airborne Visible Infrared Imaging Spectrometer and spectral libraries publicly available from the U.S. Geological Survey, indicate the potential of SR techniques in the task of accurately characterizing the mixed pixels using the library spectra. This opens new perspectives for spectral unmixing, since the abundance estimation process no longer depends on the availability of pure spectral signatures in the input data nor on the capacity of a certain endmember extraction algorithm to identify such pure signatures.


IEEE Geoscience and Remote Sensing Magazine | 2013

Hyperspectral Remote Sensing Data Analysis and Future Challenges

José M. Bioucas-Dias; Antonio Plaza; Gustavo Camps-Valls; Paul Scheunders; Nasser M. Nasrabadi; Jocelyn Chanussot

Hyperspectral remote sensing technology has advanced significantly in the past two decades. Current sensors onboard airborne and spaceborne platforms cover large areas of the Earth surface with unprecedented spectral, spatial, and temporal resolutions. These characteristics enable a myriad of applications requiring fine identification of materials or estimation of physical parameters. Very often, these applications rely on sophisticated and complex data analysis methods. The sources of difficulties are, namely, the high dimensionality and size of the hyperspectral data, the spectral mixing (linear and nonlinear), and the degradation mechanisms associated to the measurement process such as noise and atmospheric effects. This paper presents a tutorial/overview cross section of some relevant hyperspectral data analysis methods and algorithms, organized in six main topics: data fusion, unmixing, classification, target detection, physical parameter retrieval, and fast computing. In all topics, we describe the state-of-the-art, provide illustrative examples, and point to future challenges and research directions.


IEEE Transactions on Image Processing | 2007

Majorization–Minimization Algorithms for Wavelet-Based Image Restoration

Mário A. T. Figueiredo; José M. Bioucas-Dias; Robert D. Nowak

Standard formulations of image/signal deconvolution under wavelet-based priors/regularizers lead to very high-dimensional optimization problems involving the following difficulties: the non-Gaussian (heavy-tailed) wavelet priors lead to objective functions which are nonquadratic, usually nondifferentiable, and sometimes even nonconvex; the presence of the convolution operator destroys the separability which underlies the simplicity of wavelet-based denoising. This paper presents a unified view of several recently proposed algorithms for handling this class of optimization problems, placing them in a common majorization-minimization (MM) framework. One of the classes of algorithms considered (when using quadratic bounds on nondifferentiable log-priors) shares the infamous ¿singularity issue¿ (SI) of ¿iteratively re weighted least squares¿ (IRLS) algorithms: the possibility of having to handle infinite weights, which may cause both numerical and convergence issues. In this paper, we prove several new results which strongly support the claim that the SI does not compromise the usefulness of this class of algorithms. Exploiting the unified MM perspective, we introduce a new algorithm, resulting from using bounds for nonconvex regularizers; the experiments confirm the superior performance of this method, when compared to the one based on quadratic majorization. Finally, an experimental comparison of the several algorithms, reveals their relative merits for different standard types of scenarios.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Spectral–Spatial Hyperspectral Image Segmentation Using Subspace Multinomial Logistic Regression and Markov Random Fields

Jun Li; José M. Bioucas-Dias; Antonio Plaza

This paper introduces a new supervised segmentation algorithm for remotely sensed hyperspectral image data which integrates the spectral and spatial information in a Bayesian framework. A multinomial logistic regression (MLR) algorithm is first used to learn the posterior probability distributions from the spectral information, using a subspace projection method to better characterize noise and highly mixed pixels. Then, contextual information is included using a multilevel logistic Markov-Gibbs Markov random field prior. Finally, a maximum a posteriori segmentation is efficiently computed by the min-cut-based integer optimization algorithm. The proposed segmentation approach is experimentally evaluated using both simulated and real hyperspectral data sets, exhibiting state-of-the-art performance when compared with recently introduced hyperspectral image classification methods. The integration of subspace projection methods with the MLR algorithm, combined with the use of spatial-contextual information, represents an innovative contribution in the literature. This approach is shown to provide accurate characterization of hyperspectral imagery in both the spectral and the spatial domain.


IEEE Transactions on Geoscience and Remote Sensing | 2012

Total Variation Spatial Regularization for Sparse Hyperspectral Unmixing

Marian-Daniel Iordache; José M. Bioucas-Dias; Antonio Plaza

Spectral unmixing aims at estimating the fractional abundances of pure spectral signatures (also called endmembers) in each mixed pixel collected by a remote sensing hyperspectral imaging instrument. In recent work, the linear spectral unmixing problem has been approached in semisupervised fashion as a sparse regression one, under the assumption that the observed image signatures can be expressed as linear combinations of pure spectra, known a priori and available in a library. It happens, however, that sparse unmixing focuses on analyzing the hyperspectral data without incorporating spatial information. In this paper, we include the total variation (TV) regularization to the classical sparse regression formulation, thus exploiting the spatial-contextual information present in the hyperspectral images and developing a new algorithm called sparse unmixing via variable splitting augmented Lagrangian and TV. Our experimental results, conducted with both simulated and real hyperspectral data sets, indicate the potential of including spatial information (through the TV term) on sparse unmixing formulations for improved characterization of mixed pixels in hyperspectral imagery.

Collaboration


Dive into the José M. Bioucas-Dias's collaboration.

Top Co-Authors

Avatar

Antonio Plaza

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Li

Sun Yat-sen University

View shared research outputs
Top Co-Authors

Avatar

José M. P. Nascimento

Instituto Superior de Engenharia de Lisboa

View shared research outputs
Top Co-Authors

Avatar

Marian-Daniel Iordache

Flemish Institute for Technological Research

View shared research outputs
Top Co-Authors

Avatar

Jocelyn Chanussot

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Filipe Condessa

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar

Gabriel Martín

University of Extremadura

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marta B. Lopes

Instituto Superior Técnico

View shared research outputs
Researchain Logo
Decentralizing Knowledge