Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Estevez is active.

Publication


Featured researches published by José M. Estevez.


Science | 2011

O-Glycosylated Cell Wall Proteins Are Essential in Root Hair Growth

Silvia M. Velasquez; Martiniano M. Ricardi; Javier Gloazzo Dorosz; Paula Virginia Fernández; Alejandro D. Nadra; Laercio Pol-Fachin; Jack Egelund; Sascha Gille; Jesper Harholt; Marina Ciancia; Hugo Verli; Markus Pauly; Antony Bacic; Carl Erik Olsen; Peter Ulvskov; Bent Larsen Petersen; Chris Somerville; Norberto D. Iusem; José M. Estevez

Sequential protein posttranslational modifications facilitate cell wall self-assembly and root hair elongation in Arabidopsis. Root hairs are single cells that develop by tip growth and are specialized in the absorption of nutrients. Their cell walls are composed of polysaccharides and hydroxyproline-rich glycoproteins (HRGPs) that include extensins (EXTs) and arabinogalactan-proteins (AGPs). Proline hydroxylation, an early posttranslational modification of HRGPs that is catalyzed by prolyl 4-hydroxylases (P4Hs), defines the subsequent O-glycosylation sites in EXTs (which are mainly arabinosylated) and AGPs (which are mainly arabinogalactosylated). We explored the biological function of P4Hs, arabinosyltransferases, and EXTs in root hair cell growth. Biochemical inhibition or genetic disruption resulted in the blockage of polarized growth in root hairs and reduced arabinosylation of EXTs. Our results demonstrate that correct O-glycosylation on EXTs is essential for cell-wall self-assembly and, hence, root hair elongation in Arabidopsis thaliana.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase

Darby Harris; Kendall R. Corbin; Tuo Wang; Ryan Gutierrez; Ana L.F. Bertolo; Carloalberto Petti; Detlef-M. Smilgies; José M. Estevez; Dario Bonetta; Breeanna R. Urbanowicz; David W. Ehrhardt; Chris Somerville; Jocelyn K. C. Rose; Mei Hong; Seth DeBolt

The mechanisms underlying the biosynthesis of cellulose in plants are complex and still poorly understood. A central question concerns the mechanism of microfibril structure and how this is linked to the catalytic polymerization action of cellulose synthase (CESA). Furthermore, it remains unclear whether modification of cellulose microfibril structure can be achieved genetically, which could be transformative in a bio-based economy. To explore these processes in planta, we developed a chemical genetic toolbox of pharmacological inhibitors and corresponding resistance-conferring point mutations in the C-terminal transmembrane domain region of CESA1A903V and CESA3T942I in Arabidopsis thaliana. Using 13C solid-state nuclear magnetic resonance spectroscopy and X-ray diffraction, we show that the cellulose microfibrils displayed reduced width and an additional cellulose C4 peak indicative of a degree of crystallinity that is intermediate between the surface and interior glucans of wild type, suggesting a difference in glucan chain association during microfibril formation. Consistent with measurements of lower microfibril crystallinity, cellulose extracts from mutated CESA1A903V and CESA3T942I displayed greater saccharification efficiency than wild type. Using live-cell imaging to track fluorescently labeled CESA, we found that these mutants show increased CESA velocities in the plasma membrane, an indication of increased polymerization rate. Collectively, these data suggest that CESA1A903V and CESA3T942I have modified microfibril structure in terms of crystallinity and suggest that in plants, as in bacteria, crystallization biophysically limits polymerization.


Current Biology | 2011

Red and Green Algal Monophyly and Extensive Gene Sharing Found in a Rich Repertoire of Red Algal Genes

Cheong Xin Chan; Eun Chan Yang; Titas Banerjee; Hwan Su Yoon; Patrick T. Martone; José M. Estevez; Debashish Bhattacharya

The Plantae comprising red, green (including land plants), and glaucophyte algae are postulated to have a single common ancestor that is the founding lineage of photosynthetic eukaryotes. However, recent multiprotein phylogenies provide little or no support for this hypothesis. This may reflect limited complete genome data available for red algae, currently only the highly reduced genome of Cyanidioschyzon merolae, a reticulate gene ancestry, or variable gene divergence rates that mislead phylogenetic inference. Here, using novel genome data from the mesophilic Porphyridium cruentum and Calliarthron tuberculosum, we analyze 60,000 novel red algal genes to test the monophyly of red + green (RG) algae and their extent of gene sharing with other lineages. Using a gene-by-gene approach, we find an emerging signal of RG monophyly (supported by ∼50% of the examined protein phylogenies) that increases with the number of distinct phyla and terminal taxa in the analysis. A total of 1,808 phylogenies show evidence of gene sharing between Plantae and other lineages. We demonstrate that a rich mesophilic red algal gene repertoire is crucial for testing controversial issues in eukaryote evolution and for understanding the complex patterns of gene inheritance in protists.


Plant Physiology | 2012

Disruption of Abscisic Acid Signaling Constitutively Activates Arabidopsis Resistance to the Necrotrophic Fungus Plectosphaerella cucumerina

Andrea Sánchez-Vallet; Gemma López; Magdalena Delgado-Cerezo; Marie-Pierre Rivière; Francisco Llorente; Paula Virginia Fernández; Eva Miedes; José M. Estevez; Murray Grant; Antonio Molina

Plant resistance to necrotrophic fungi is regulated by a complex set of signaling pathways that includes those mediated by the hormones salicylic acid (SA), ethylene (ET), jasmonic acid (JA), and abscisic acid (ABA). The role of ABA in plant resistance remains controversial, as positive and negative regulatory functions have been described depending on the plant-pathogen interaction analyzed. Here, we show that ABA signaling negatively regulates Arabidopsis (Arabidopsis thaliana) resistance to the necrotrophic fungus Plectosphaerella cucumerina. Arabidopsis plants impaired in ABA biosynthesis, such as the aba1-6 mutant, or in ABA signaling, like the quadruple pyr/pyl mutant (pyr1pyl1pyl2pyl4), were more resistant to P. cucumerina than wild-type plants. In contrast, the hab1-1abi1-2abi2-2 mutant impaired in three phosphatases that negatively regulate ABA signaling displayed an enhanced susceptibility phenotype to this fungus. Comparative transcriptomic analyses of aba1-6 and wild-type plants revealed that the ABA pathway negatively regulates defense genes, many of which are controlled by the SA, JA, or ET pathway. In line with these data, we found that aba1-6 resistance to P. cucumerina was partially compromised when the SA, JA, or ET pathway was disrupted in this mutant. Additionally, in the aba1-6 plants, some genes encoding cell wall-related proteins were misregulated. Fourier transform infrared spectroscopy and biochemical analyses of cell walls from aba1-6 and wild-type plants revealed significant differences in their Fourier transform infrared spectratypes and uronic acid and cellulose contents. All these data suggest that ABA signaling has a complex function in Arabidopsis basal resistance, negatively regulating SA/JA/ET-mediated resistance to necrotrophic fungi.


Molecular Plant | 2012

Arabidopsis Heterotrimeric G-protein Regulates Cell Wall Defense and Resistance to Necrotrophic Fungi

Magdalena Delgado-Cerezo; Clara Sánchez-Rodríguez; Viviana Escudero; Eva Miedes; Paula Virginia Fernández; Lucía Jordá; Camilo Hernández-Blanco; Andrea Sánchez-Vallet; Paweł Bednarek; Paul Schulze-Lefert; Shauna Somerville; José M. Estevez; Staffan Persson; Antonio Molina

The Arabidopsis heterotrimeric G-protein controls defense responses to necrotrophic and vascular fungi. The agb1 mutant impaired in the Gβ subunit displays enhanced susceptibility to these pathogens. Gβ/AGB1 forms an obligate dimer with either one of the Arabidopsis Gγ subunits (γ1/AGG1 and γ2/AGG2). Accordingly, we now demonstrate that the agg1 agg2 double mutant is as susceptible as agb1 plants to the necrotrophic fungus Plectosphaerella cucumerina. To elucidate the molecular basis of heterotrimeric G-protein-mediated resistance, we performed a comparative transcriptomic analysis of agb1-1 mutant and wild-type plants upon inoculation with P. cucumerina. This analysis, together with metabolomic studies, demonstrated that G-protein-mediated resistance was independent of defensive pathways required for resistance to necrotrophic fungi, such as the salicylic acid, jasmonic acid, ethylene, abscisic acid, and tryptophan-derived metabolites signaling, as these pathways were not impaired in agb1 and agg1 agg2 mutants. Notably, many mis-regulated genes in agb1 plants were related with cell wall functions, which was also the case in agg1 agg2 mutant. Biochemical analyses and Fourier Transform InfraRed (FTIR) spectroscopy of cell walls from G-protein mutants revealed that the xylose content was lower in agb1 and agg1 agg2 mutants than in wild-type plants, and that mutant walls had similar FTIR spectratypes, which differed from that of wild-type plants. The data presented here suggest a canonical functionality of the Gβ and Gγ1/γ2 subunits in the control of Arabidopsis immune responses and the regulation of cell wall composition.


Plant Physiology | 2006

Characterization of Synthetic Hydroxyproline-Rich Proteoglycans with Arabinogalactan Protein and Extensin Motifs in Arabidopsis

José M. Estevez; Marcia J. Kieliszewski; Natalie Khitrov; Chris Somerville

A series of gene constructs encoding synthetic glycomodule peptides with N-terminal signal sequences and C-terminal green fluorescent proteins were expressed in transgenic Arabidopsis (Arabidopsis thaliana) under the control of the 35S promoter. The synthetic glycomodule peptides were composed of repetitive proline-containing motifs that have been previously found to be substrates for prolyl hydroxylases and subsequent O-glycosylation of the hydroxyproline residues. All of the constructs were secreted in aerial tissues, but not in roots. The amount of hydroxylation and glycosylation of the various constructs varied depending on the tissue. Also, accumulation of the proteins exhibited a high degree of cell-type specificity within various tissues due to posttranscriptional effects. The observations reveal a high level of complexity in the synthesis, secretion, and turnover of the glycoproteins.


Molecular Plant-microbe Interactions | 2009

The ERECTA Receptor-Like Kinase Regulates Cell Wall–Mediated Resistance to Pathogens in Arabidopsis thaliana

Clara Sánchez-Rodríguez; José M. Estevez; Francisco Llorente; Camilo Hernández-Blanco; Lucía Jordá; Israel Pagán; Marta Berrocal; Yves Marco; Shauna Somerville; Antonio Molina

Some receptor-like kinases (RLK) control plant development while others regulate immunity. The Arabidopsis ERECTA (ER) RLK regulates both biological processes. To discover specific components of ER-mediated immunity, a genetic screen was conducted to identify suppressors of erecta (ser) susceptibility to Plectosphaerella cucumerina fungus. The ser1 and ser2 mutations restored disease resistance to this pathogen to wild-type levels in the er-1 background but failed to suppress er-associated developmental phenotypes. The deposition of callose upon P. cucumerina inoculation, which was impaired in the er-1 plants, was also restored to near wild-type levels in the ser er-1 mutants. Analyses of er cell walls revealed that total neutral sugars were reduced and uronic acids increased relative to those of wild-type walls. Interestingly, in the ser er-1 walls, neutral sugars were elevated and uronic acids were reduced relative to both er-1 and wild-type plants. The cell-wall changes found in er-1 and the ser er-1 mutants are unlikely to contribute to their developmental alterations. However, they may influence disease resistance, as a positive correlation was found between uronic acids content and resistance to P. cucumerina. We propose a specific function for ER in regulating cell wall-mediated disease resistance that is distinct from its role in development.


Glycobiology | 2009

Chemical and in situ characterization of macromolecular components of the cell walls from the green seaweed Codium fragile.

José M. Estevez; Paula Virginia Fernández; Luciana Kasulin; Paul Dupree; Marina Ciancia

A comprehensive analysis of the carbohydrate-containing macromolecules from the coencocytic green seaweed Codium fragile and their arrangement in the cell wall was carried out. Cell walls in this seaweed are highly complex structures composed of 31% (w/w) of linear (1-->4)-beta-D-mannans, 9% (w/w) of pyruvylated arabinogalactan sulfates (pAGS), and low amounts of hydroxyproline rich-glycoprotein epitopes (HRGP). In situ chemical imaging by synchrotron radiation Fourier transform infrared (SR-FTIR) microspectroscopy and by immunolabeling using antibodies against specific cell wall carbohydrate epitopes revealed that beta-d-mannans and pAGS are placed in the middle part of the cell wall, whereas HRGP epitopes (arabinogalactan proteins (AGPs) and extensins) are located on the wall boundaries, especially in the utricle apical zone. pAGS are sulfated at C-2 and/or C-4 of the 3-linked beta-L-arabinopyranose units and at C-4 and/or C-6 of the 3-linked beta-D-galactopyranose residues. In addition, high levels of ketals of pyruvic acid were found mainly at 3,4- of some terminal beta-D-Galp units forming a five-membered ring. Ramification was found at some C-6 of the 3-linked beta-D-Galp units. In agreement with the immunolabeled AGP epitopes, a nonsulfated branched furanosidic arabinan with 5-linked alpha-L-Araf, 3,5-linked alpha-L-Araf, and terminal alpha-L-Araf units and a nonsulfated galactan structure composed of 3-(3,6)-linked beta-D-Galp residues, both typical of type-II AG glycans were found, suggesting that AGP structures are present at low levels in the cell walls of this seaweed. Based on this study, it is starting to emerge that Codium has developed unique cell wall architecture, when compared, not only with that of vascular plants, but also with other related green seaweeds and algae.


Carbohydrate Research | 2000

The system of low-molecular-weight carrageenans and agaroids from the room-temperature-extracted fraction of Kappaphycus alvarezii.

José M. Estevez; Marina Ciancia; Alberto S. Cerezo

The room-temperature-extracted fraction from the red seaweed Kappaphycus alvarezii consists mainly of low-molecular-weight carrageenans, with structural dispersion around a basic kappa-pattern. This dispersion results from: (a) low percentages of 3,6-anhydrogalactose and the presence of precursor units; (b) important quantities of 6-O-methyl beta-D-galactose (4-sulfate) residues; (c) significant amounts of iota-repeating structure, and (d) small amounts of non-sulfated and disulfated beta-D-galactose residues. Significant quantities of alpha-L-galactose units suggest the presence of agaroids, as it has been reported in several other carrageenophytes.


Plant Physiology | 2012

Potato Snakin-1 Gene Silencing Affects Cell Division, Primary Metabolism, and Cell Wall Composition

Vanesa Nahirñak; Natalia Inés Almasia; Paula Virginia Fernández; Horacio Esteban Hopp; José M. Estevez; Fernando Carrari; Cecilia Vazquez-Rovere

Snakin-1 (SN1) is an antimicrobial cysteine-rich peptide isolated from potato (Solanum tuberosum) that was classified as a member of the Snakin/Gibberellic Acid Stimulated in Arabidopsis protein family. In this work, a transgenic approach was used to study the role of SN1 in planta. Even when overexpressing SN1, potato lines did not show remarkable morphological differences from the wild type; SN1 silencing resulted in reduced height, which was accompanied by an overall reduction in leaf size and severe alterations of leaf shape. Analysis of the adaxial epidermis of mature leaves revealed that silenced lines had 70% to 90% increases in mean cell size with respect to wild-type leaves. Consequently, the number of epidermal cells was significantly reduced in these lines. Confocal microscopy analysis after agroinfiltration of Nicotiana benthamiana leaves showed that SN1-green fluorescent protein fusion protein was localized in plasma membrane, and bimolecular fluorescence complementation assays revealed that SN1 self-interacted in vivo. We further focused our study on leaf metabolism by applying a combination of gas chromatography coupled to mass spectrometry, Fourier transform infrared spectroscopy, and spectrophotometric techniques. These targeted analyses allowed a detailed examination of the changes occurring in 46 intermediate compounds from primary metabolic pathways and in seven cell wall constituents. We demonstrated that SN1 silencing affects cell division, leaf primary metabolism, and cell wall composition in potato plants, suggesting that SN1 has additional roles in growth and development beyond its previously assigned role in plant defense.

Collaboration


Dive into the José M. Estevez's collaboration.

Top Co-Authors

Avatar

Marina Ciancia

University of Buenos Aires

View shared research outputs
Top Co-Authors

Avatar

Silvia M. Velasquez

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Alberto S. Cerezo

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar

Cecilia Borassi

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Silvina Mangano

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar

Eliana Marzol

Fundación Instituto Leloir

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martiniano M. Ricardi

Facultad de Ciencias Exactas y Naturales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge