Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Gallego is active.

Publication


Featured researches published by José M. Gallego.


Nature Chemistry | 2010

Charge-transfer-induced structural rearrangements at both sides of organic/metal interfaces

Tzu-Chun Tseng; Christian Urban; Yang Wang; Roberto Otero; Steven L. Tait; Manuel Alcamí; David Ecija; Marta Trelka; José M. Gallego; Nian Lin; Mitsuharu Konuma; U. Starke; Alexei Nefedov; Alexander Langner; Christof Wöll; María Ángeles Herranz; Fernando Martín; Nazario Martín; Klaus Kern; R. Miranda

Organic/metal interfaces control the performance of many optoelectronic organic devices, including organic light-emitting diodes or field-effect transistors. Using scanning tunnelling microscopy, low-energy electron diffraction, X-ray photoemission spectroscopy, near-edge X-ray absorption fine structure spectroscopy and density functional theory calculations, we show that electron transfer at the interface between a metal surface and the organic electron acceptor tetracyano-p-quinodimethane leads to substantial structural rearrangements on both the organic and metallic sides of the interface. These structural modifications mediate new intermolecular interactions through the creation of stress fields that could not have been predicted on the basis of gas-phase neutral tetracyano-p-quinodimethane conformation.


Advanced Materials | 2011

Molecular Self‐Assembly at Solid Surfaces

Roberto Otero; José M. Gallego; Amadeo L. Vázquez de Parga; Nazario Martín; R. Miranda

Self-assembly, the process by which objects initially distributed at random arrange into well-defined patterns exclusively due to their local mutual interactions without external intervention, is generally accepted to be the most promising method for large-scale fabrication of functional nanostructures. In particular, the ordering of molecular building-blocks deposited at solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) or photovoltaic solar cells. However, the fundamental knowledge on the nature and strength of the intermolecular and molecule-substrate interactions that govern the ordering of molecular adsorbates is, in many cases, rather scarce. In most cases, the structure and morphology of the organic-metal interface is not known and it is just assumed to be the same as in the bulk, thereby implicitly neglecting the role of the surface on the assembly. However, this approximation is usually not correct, and the evidence gathered over the last decades points towards an active role of the surface in the assembly, leading to self-assembled structures that only in a few occasions can be understood by considering just intermolecular interactions in solid or gas phases. In this work we review several examples from our recent research demonstrating the apparently endless variety of ways in which the surface might affect the assembly of organic adsorbates.


Nature Structural & Molecular Biology | 2002

A conserved RNA structure within the HCV IRES eIF3-binding site

Adam Collier; José M. Gallego; Roscoe Klinck; Paul T. Cole; Stephen J. Harris; Geoffrey P. Harrison; Fareed Aboul-ela; Gabriele Varani; Stephen B. Walker

The hepatitis C virus (HCV) internal ribosome entry site (IRES) is recognized specifically by the small ribosomal subunit and eukaryotic initiation factor 3 (eIF3) before viral translation initiation. Using extensive mutagenesis and structure probing analysis, we show that the eIF3-binding domain of the HCV IRES contains an internal loop structure (loop IIIb) and an adjacent mismatched helix that are important for IRES-dependent initiation of translation. NMR studies reveal a unique three-dimensional structure for this internal loop that is conserved between viral isolates of varying primary sequence in this region. These data indicate that internal loop IIIb may be an attractive target for structure-based design of new antiviral agents.


Chemical Reviews | 2009

Ordering fullerenes at the nanometer scale on solid surfaces

Luis Sánchez; Roberto Otero; José M. Gallego; R. Miranda; Nazario Martín

Departamento de Quı́mica Orgánica, Facultad de C.C. Quı́micas, Universidad Complutense de Madrid, 28040 Madrid, Departamento de Fı́sica de la Materia Condensada, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Instituto Madrileño de Estudios Avanzados en Nanociencia, IMDEA-Nanociencia, 28049 Madrid, and Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Cientı́ficas, Cantoblanco, 28049 Madrid, Spain


RNA | 2009

Three-way RNA junctions with remote tertiary contacts: A recurrent and highly versatile fold

Marcos de la Peña; David Dufour; José M. Gallego

Three-way junction RNAs adopt a recurrent Y shape when two of the helices form a coaxial stack and the third helix establishes one or more tertiary contacts several base pairs away from the junction. In this review, the structure, distribution, and functional relevance of these motifs are examined. Structurally, the folds exhibit conserved junction topologies, and the distal tertiary interactions play a crucial role in determining the final shape of the structures. The junctions and remote tertiary contacts behave as flexible hinge motifs that respond to changes in the other region, providing these folds with switching mechanisms that have been shown to be functionally useful in a variety of contexts. In addition, the juxtaposition of RNA domains at the junction and at the distal tertiary complexes enables the RNA helices to adopt unusual conformations that are frequently used by proteins, RNA molecules, and antibiotics as platforms for specific binding. As a consequence of these properties, Y-shaped junctions are widely distributed in all kingdoms of life, having been observed in small naked RNAs such as riboswitches and ribozymes or embedded in complex ribonucleoprotein systems like ribosomal RNAs, RNase P, or the signal recognition particle. In all cases, the folds were found to play an essential role for the functioning or assembly of the RNA or ribonucleoprotein systems that contain them.


Journal of the American Chemical Society | 2009

Evolving a Polymerase for Hydrophobic Base Analogues

David Loakes; José M. Gallego; Vitor B. Pinheiro; Eric T. Kool; Philipp Holliger

Hydrophobic base analogues (HBAs) have shown great promise for the expansion of the chemical and coding potential of nucleic acids but are generally poor polymerase substrates. While extensive synthetic efforts have yielded examples of HBAs with favorable substrate properties, their discovery has remained challenging. Here we describe a complementary strategy for improving HBA substrate properties by directed evolution of a dedicated polymerase using compartmentalized self-replication (CSR) with the archetypal HBA 5-nitroindole (d5NI) and its derivative 5-nitroindole-3-carboxamide (d5NIC) as selection substrates. Starting from a repertoire of chimeric polymerases generated by molecular breeding of DNA polymerase genes from the genus Thermus, we isolated a polymerase (5D4) with a generically enhanced ability to utilize HBAs. The selected polymerase. 5D4 was able to form and extend d5NI and d5NIC (d5NI(C)) self-pairs as well as d5NI(C) heteropairs with all four bases with efficiencies approaching, or exceeding, those of the cognate Watson-Crick pairs, despite significant distortions caused by the intercalation of the d5NI(C) heterocycles into the opposing strand base stack, as shown by nuclear magnetic resonance spectroscopy (NMR). Unlike Taq polymerase, 5D4 was also able to extend HBA pairs such as Pyrene: varphi (abasic site), d5NI: varphi, and isocarbostyril (ICS): 7-azaindole (7AI), allowed bypass of a chemically diverse spectrum of HBAs, and enabled PCR amplification with primers comprising multiple d5NI(C)-substitutions, while maintaining high levels of catalytic activity and fidelity. The selected polymerase 5D4 promises to expand the range of nucleobase analogues amenable to replication and should find numerous applications, including the synthesis and replication of nucleic acid polymers with expanded chemical and functional diversity.


Journal of Molecular Biology | 2002

Structure and stability of wild-type and mutant RNA internal loops from the SL-1 domain of the HIV-1 packaging signal

Jane Greatorex; José M. Gallego; Gabriele Varani; Andrew M. L. Lever

The packaging signal (Psi) of the human immunodeficiency virus type 1 (HIV-1) enables encapsidation of the full-length genomic RNA against a background of a vast excess of cellular mRNAs. The core HIV-1 Psi is approximately 109 nucleotides and contains sequences critical for viral genomic dimerisation and splicing, in addition to the packaging signal. It consists of a series of stem-loops (termed SL-1 to SL-4), which can be arranged in a cloverleaf secondary structure. Using a combination of NMR spectroscopy, UV melting experiments, molecular modeling and phylogenetic analyses, we have explored the structure of two conserved internal loops proximal to the palindromic sequence of SL-1. Internal loop A, composed of six purines, forms a flexible structure that is strikingly similar to the Rev responsive element motif when bound to Rev protein. This result suggests that it may function as a protein-binding site. The absolutely conserved four-purine internal loop B is instead conformationally and thermodynamically unstable, and exhibits multiple conformations in solution. By introducing a double AGG to GGA mutation within this loop, its conformation is stabilised to form a new intra-molecular G:A:G base-triplet. The structure of the GGA mutant explains the relative instability of the wild-type loop. In a manner analogous to SL-3, we propose that conformational flexibility at this site may facilitate melting of the structure during Gag protein capture or genomic RNA dimerisation.


Applied Physics Letters | 1991

Surface characterization of epitaxial, semiconducting, FeSi2 grown on Si(100)

J. Alvarez; J. J. Hinarejos; E. G. Michel; José M. Gallego; A.L. Vázquez de Parga; J. de la Figuera; Carmen Ocal; R. Miranda

We have identified the composition and range of thermal stability of FeSi and FeSi2 films grown on Si(100) by solid phase epitaxy and reactive deposition epitaxy. Evidence for the semiconducting character of FeSi2 is obtained from photoemission measurements giving a low density of states at the Fermi level. Si enrichment at the outer surface of the silicides at temperatures much lower than previously thought has been found by depth profiling. Scanning tunneling microscopy reveals a rather inhomogeneous growth with a tendency towards epitaxial growth favored by the presence of surface steps on the Si substrate.


Nucleic Acids Research | 2009

Structure–function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop–loop interaction motif conserved in most natural hammerheads

David Dufour; Marcos de la Peña; Selma Gago; Ricardo Flores; José M. Gallego

Loop–loop tertiary interactions play a key role in the folding and catalytic activity of natural hammerhead ribozymes. Using a combination of NMR spectroscopy, site-directed mutagenesis and kinetic and infectivity analyses, we have examined the structure and function of loops 1 and 2 of the (+) and (–) hammerheads of chrysanthemum chlorotic mottle viroid RNA. In both hammerheads, loop 1 is a heptanucleotide hairpin loop containing an exposed U at its 5′ side and an extrahelical U at its 3′-side critical for the catalytic activity of the ribozyme in vitro and for viroid infectivity in vivo, whereas loop 2 has a key opened A at its 3′-side. These structural features promote a specific loop–loop interaction motif across the major groove. The essential features of this tertiary structure element, base pairing between the 5′ U of loop 1 and the 3′ A of loop 2, and interaction of the extrahelical pyrimidine of loop 1 with loop 2, are likely shared by a significant fraction of natural hammerheads.


Journal of Biological Chemistry | 2003

Rev binds specifically to a purine loop in the SL1 region of the HIV-1 leader RNA.

José M. Gallego; Jane Greatorex; Hui Zhang; Shyamala C. Arunachalam; Jianhua Fang; John Seamons; Susan M. Lea; Roger J. Pomerantz; Andrew M. L. Lever

The leader RNA sequence of human immunodeficiency virus type 1 (HIV-1) consists of a complex series of stem loop structures that are critical for viral replication. Three-dimensional structural analysis by NMR of one of these structures, the SL1 stem loop of the packaging signal region, revealed a highly conserved purine rich loop with a structure nearly identical to the Rev-binding loop of the Rev response element. Using band-shift assays, surface plasmon resonance, and further NMR analysis, we demonstrate that this loop binds Rev. HIV-1 appears to have a second Rev-binding site close to the major splice donor site that may have an additional role in the viral life cycle.

Collaboration


Dive into the José M. Gallego's collaboration.

Top Co-Authors

Avatar

R. Miranda

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nazario Martín

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Christian Urban

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Fernando Martín

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manuel Alcamí

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Marta Trelka

Autonomous University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Yang Wang

Autonomous University of Madrid

View shared research outputs
Researchain Logo
Decentralizing Knowledge