Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Luengo is active.

Publication


Featured researches published by José M. Luengo.


Journal of Bacteriology | 2004

The Homogentisate Pathway: a Central Catabolic Pathway Involved in the Degradation of l-Phenylalanine, l-Tyrosine, and 3-Hydroxyphenylacetate in Pseudomonas putida

Elsa Arias-Barrau; Elías R. Olivera; José M. Luengo; Cristina Fernández; Beatriz Galán; José Luis García; Eduardo Díaz; Baltasar Miñambres

Pseudomonas putida metabolizes Phe and Tyr through a peripheral pathway involving hydroxylation of Phe to Tyr (PhhAB), conversion of Tyr into 4-hydroxyphenylpyruvate (TyrB), and formation of homogentisate (Hpd) as the central intermediate. Homogentisate is then catabolized by a central catabolic pathway that involves three enzymes, homogentisate dioxygenase (HmgA), fumarylacetoacetate hydrolase (HmgB), and maleylacetoacetate isomerase (HmgC), finally yielding fumarate and acetoacetate. Whereas the phh, tyr, and hpd genes are not linked in the P. putida genome, the hmgABC genes appear to form a single transcriptional unit. Gel retardation assays and lacZ translational fusion experiments have shown that hmgR encodes a specific repressor that controls the inducible expression of the divergently transcribed hmgABC catabolic genes, and homogentisate is the inducer molecule. Footprinting analysis revealed that HmgR protects a region in the Phmg promoter that spans a 17-bp palindromic motif and an external direct repetition from position -16 to position 29 with respect to the transcription start site. The HmgR protein is thus the first IclR-type regulator that acts as a repressor of an aromatic catabolic pathway. We engineered a broad-host-range mobilizable catabolic cassette harboring the hmgABC, hpd, and tyrB genes that allows heterologous bacteria to use Tyr as a unique carbon and energy source. Remarkably, we show here that the catabolism of 3-hydroxyphenylacetate in P. putida U funnels also into the homogentisate central pathway, revealing that the hmg cluster is a key catabolic trait for biodegradation of a small number of aromatic compounds.


Molecular Microbiology | 2001

The phenylacetyl‐CoA catabolon: a complex catabolic unit with broad biotechnological applications

José M. Luengo; José Luis García; Elías R. Olivera

The term catabolon was introduced to define a complex functional unit integrated by different catabolic pathways, which are, or could be, co‐ordinately regulated, and that catalyses the transformation of structurally related compounds into a common catabolite. The phenylacetyl‐CoA catabolon encompasses all the routes involved in the transformation of styrene, 2‐phenylethylamine, trans‐styrylacetic acid, phenylacetaldehyde, phenylacetic acid, phenylacetyl amides, phenylacetyl esters and n‐phenylalkanoic acids containing an even number of carbon atoms, into phenylacetyl‐CoA. This common intermediate is subsequently catabolized through a route of convergence, the phenylacetyl‐CoA catabolon core, into general metabolites. The genetic organization of this central route, the biochemical significance of the whole functional unit and its broad biotechnological applications are discussed.


Infection and Immunity | 2000

A Major Secreted Elastase Is Essential for Pathogenicity of Aeromonas hydrophila

Alberto Cascón; Javier Yugueros; Alejandro Temprano; Maria Carmen Arroyo Sanchez; Carmen Hernanz; José M. Luengo; Germán Naharro

ABSTRACT Aeromonas hydrophila is an opportunistic pathogen and the leading cause of fatal hemorrhagic septicemia in rainbow trout. A gene encoding an elastolytic activity, ahyB, was cloned from Aeromonas hydrophila AG2 into pUC18 and expressed inEscherichia coli and in the nonproteolytic speciesAeromonas salmonicida subsp. masoucida. Nucleotide sequence analysis of the ahyB gene revealed an open reading frame of 1,764 nucleotides with coding capacity for a 588-amino-acid protein with a molecular weight of 62,728. The first 13 N-terminal amino acids of the purified protease completely match those deduced from DNA sequence starting at AAG (Lys-184). This finding indicated that AhyB is synthesized as a preproprotein with a 19-amino-acid signal peptide, a 164-amino-acid N-terminal propeptide, and a 405-amino-acid intermediate which is further processed into a mature protease and a C-terminal propeptide. The protease hydrolyzed casein and elastin and showed a high sequence similarity to other metalloproteases, especially with the mature form of thePseudomonas aeruginosa elastase (52% identity),Helicobacter pylori zinc metalloprotease (61% identity), or proteases from several species of Vibrio (52 to 53% identity). The gene ahyB was insertionally inactivated, and the construct was used to create an isogenic ahyB mutant ofA. hydrophila. These first reports of a defined mutation in an extracellular protease of A. hydrophila demonstrate an important role in pathogenesis.


Molecular Microbiology | 2001

Two different pathways are involved in the β-oxidation of n-alkanoic and n-phenylalkanoic acids in Pseudomonas putida U: genetic studies and biotechnological applications

Elías R. Olivera; David Carnicero; Belén García; Baltasar Miñambres; Miguel Ángel Moreno; Librada M. Cañedo; Concetta C. DiRusso; Germán Naharro; José M. Luengo

In Pseudomonas putida U, the degradation of n‐alkanoic and n‐phenylalkanoic acids is carried out by two sets of β‐oxidation enzymes (βI and βII). Whereas the first one (called βI) is constitutive and catalyses the degradation of n‐alkanoic and n‐phenylalkanoic acids very efficiently, the other one (βII), which is only expressed when some of the genes encoding βI enzymes are mutated, catabolizes n‐phenylalkanoates (n > 4) much more slowly. Genetic studies revealed that disruption or deletion of some of the βI genes handicaps the growth of P. putida U in media containing n‐alkanoic or n‐phenylalkanoic acids with an acyl moiety longer than C4. However, all these mutants regained their ability to grow in media containing n‐alkanoates as a result of the induction of βII, but they were still unable to catabolize n‐phenylalkanoates completely, as the βI‐FadBA enzymes are essential for the β‐oxidation of certain n‐phenylalkanoyl‐CoA derivatives when they reach a critical size. Owing to the existence of the βII system, mutants lacking βIfadB/A are able to synthesize new poly 3‐OH‐n‐alkanoates (PHAs) and poly 3‐OH‐n‐phenylalkanoates (PHPhAs) efficiently. However, they are unable to degrade these polymers, becoming bioplastic overproducer mutants. The genetic and biochemical importance of these results is reported and discussed.


Journal of Biological Chemistry | 2007

Biochemical Evidence That phaZ Gene Encodes a Specific Intracellular Medium Chain Length Polyhydroxyalkanoate Depolymerase in Pseudomonas putida KT2442 CHARACTERIZATION OF A PARADIGMATIC ENZYME

Laura I. de Eugenio; Pedro García; José M. Luengo; J. Sanz; Julio San Román; José Luis García; María Auxiliadora Prieto

Polyhydroxyalkanoates (PHAs) can be catabolized by many microorganisms using intra- or extracellular PHA depolymerases. Most of our current knowledge of these intracellular enzyme-coding genes comes from the analysis of short chain length PHA depolymerases, whereas medium chain length PHA (mcl-PHA) intracellular depolymerization systems still remained to be characterized. The phaZ gene of some Pseudomonas putida strains has been identified only by mutagenesis and complementation techniques as putative intracellular mcl-PHA depolymerase. However, none of their corresponding encoded PhaZ enzymes have been characterized in depth. In this study the PhaZ depolymerase from P. putida KT2442 has been purified and biochemically characterized after its overexpression in Escherichia coli. To facilitate these studies we have developed a new and very sensitive radioactive method for detecting PHA hydrolysis in vitro. We have demonstrated that PhaZ is an intracellular depolymerase that is located in PHA granules and that hydrolyzes specifically mcl-PHAs containing aliphatic and aromatic monomers. The enzyme behaves as a serine hydrolase that is inhibited by phenylmethylsulfonyl fluoride. We have modeled the three-dimensional structure of PhaZ complexed with a 3-hydroxyoctanoate dimer. Using this model, we found that the enzyme appears to be built up from a coreα/β hydrolase-type domain capped with a lid structure with an active site containing a catalytic triad buried near the connection between domains. All these data constitute the first biochemical characterization of PhaZ and allow us to propose this enzyme as the paradigmatic representative of intracellular endo/exo-mcl-PHA depolymerases.


Journal of Clinical Microbiology | 2001

Identification of Staphylococcus spp. by PCR-Restriction Fragment Length Polymorphism of gap Gene

Javier Yugueros; Alejandro Temprano; Maria Carmen Arroyo Sanchez; José M. Luengo; Germán Naharro

ABSTRACT Oligonucleotide primers specific for the Staphylococcus aureus gap gene were previously designed to identify 12Staphylococcus spp. by PCR. In the present study,AluI digestion of PCR-generated products rendered distinctive restriction fragment length polymorphism patterns that allowed 24 Staphylococcus spp. to be identified with high specificity.


Microbiology | 1979

Lysine Regulation of Penicillin Biosynthesis in Low-producing and Industrial Strains of Penicillium chrysogenum

José M. Luengo; Gloria Revilla; Julio R. Villanueva; Juan F. Martín

The inhibitory effect of L-lysine on penicillin biosynthesis by Penicillium chrysogenum has been compared in a low-producing strain (Wis. 54-1255) and a high-producing strain (ASP-78). Lysine inhibited total penicillin synthesis to a similar extent in both strains. However, in the high-producing strain the onset of penicillin synthesis occurred even at a high lysine concentration, whereas in the low-producing strain lysine had to be depleted before penicillin production commenced.


Archive | 2007

Synthesis and Degradation of Polyhydroxyalkanoates

María Auxiliadora Prieto; Laura I. de Eugenio; Beatriz Galán; José M. Luengo; Bernard Witholt

Abbreviations: PHA: Polyhydroxyalkanoate, GAPs: Granule associated proteins, scl-PHAs: Short-chain-length PHAs, mcl-PHAs: Medium-chainlength PHAs, PHB: Polyhydroxybutyrate, CoA: Coenzyme A, ACP: Acyl carrier protein, GFP: Green fluorescent protein, P(HB-co-HA): Poly(3hydroxybutyrate-co-3-hydroxyalkanoates), PHO: Poly-3-hydroxyoctanoate, PHV: Poly-3-hydroxyvalerate, SCP: single-cell-protein.


Microbiology | 1997

Catabolism of D-glucose by Pseudomonas putida U occurs via extracellular transformation into D-gluconic acid and induction of a specific gluconate transport system

Carmen Schleissner; Angel Reglero; José M. Luengo

Pseudomonas putida U does not degrade D-glucose through the glycolytic pathway but requires (i) its oxidation to D-gluconic acid by a peripherally located constitutive glucose dehydrogenase (insensitive to osmotic shock), (ii) accumulation of D-gluconic acid in the extracellular medium, and (iii) the induction of a specific energy-dependent transport system responsible for the uptake of D-gluconic acid. This uptake system showed maximal rates of transport at 30 degrees C in 50 mM potassium phosphate buffer, pH 7.0. Under these conditions the K(m) calculated for D-gluconic acid was 6.7 microM. Furthermore, a different transport system, specific for the uptake of glucose, was also identified. It is active and shows maximal uptake rates at 35 degrees C in 50 mM potassium phosphate buffer, pH 6.0, with a K(m) value of 8.3 microM.


Applied Microbiology and Biotechnology | 2005

Production of 3-hydroxy-n-phenylalkanoic acids by a genetically engineered strain of Pseudomonas putida

Ángel Sandoval; Elsa Arias-Barrau; Francisco Bermejo; Librada M. Cañedo; Germán Naharro; Elías R. Olivera; José M. Luengo

Overexpression of the gene encoding the poly-3-hydroxy-n-phenylalkanoate (PHPhA) depolymerase (phaZ) in Pseudomonas putida U avoids the accumulation of these polymers as storage granules. In this recombinant strain, the 3-OH-acyl-CoA derivatives released from the different aliphatic or aromatic poly-3-hydroxyalkanoates (PHAs) are catabolized through the β-oxidation pathway and transformed into general metabolites (acetyl-CoA, succinyl-CoA, phenylacetyl-CoA) or into non-metabolizable end-products (cinnamoyl-CoA). Taking into account the biochemical, pharmaceutical and industrial interest of some PHA catabolites (i.e., 3-OH-PhAs), we designed a genetically engineered strain of P. putida U (P. putida U ΔfadBA-phaZ) that efficiently bioconverts (more than 80%) different n-phenylalkanoic acids into their 3-hydroxyderivatives and excretes these compounds into the culture broth.

Collaboration


Dive into the José M. Luengo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José Luis García

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge