Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Martín-Durán is active.

Publication


Featured researches published by José M. Martín-Durán.


Developmental Biology | 2010

Germ layer specification and axial patterning in the embryonic development of the freshwater planarian Schmidtea polychroa

José M. Martín-Durán; Enrique Amaya; Rafael Romero

Although patterning during regeneration in adult planarians has been studied extensively, very little is known about how the initial planarian body plan arises during embryogenesis. Herein, we analyze the process of embryo patterning in the species Schmidtea polychroa by comparing the expression of genes involved in the establishment of the metazoan body plan. Planarians present a derived ectolecithic spiralian development characterized by dispersed cleavage within a yolk syncytium and an early transient embryo capable of feeding on the maternally supplied yolk cells. During this stage of development, we only found evidence of canonical Wnt pathway, mostly associated with the development of its transient pharynx. At these stages, genes involved in gastrulation (snail) and germ layer determination (foxA and twist) are specifically expressed in migrating blastomeres and those giving rise to the temporary gut and pharyngeal muscle. After yolk ingestion, the embryo expresses core components of the canonical Wnt pathway and the BMP pathway, suggesting that the definitive axial identities are established late. These data support the division of planarian development into two separate morphogenetic stages: a highly divergent gastrulation stage, which segregates the three germ layers and establishes the primary organization of the feeding embryo; and subsequent metamorphosis, based on totipotent blastomeres, which establishes the definitive adult body plan using mechanisms that are similar to those used during regeneration and homeostasis in the adult.


Current Biology | 2012

Deuterostomic Development in the Protostome Priapulus caudatus

José M. Martín-Durán; Ralf Janssen; Sofia Wennberg; Graham E. Budd; Andreas Hejnol

The fate of the blastopore during development in the bilaterian ancestor is currently not well understood. In deuterostomes, the blastopore forms the anus, but its fate in protostome groups is variable. This variability, combined with an absence of information from key taxa, hampers the reconstruction of the ancestral developmental mode of the Protostomia and the Bilateria. The blastopore fate of the bilaterian ancestor plays a crucial role in understanding the transition from radial to bilateral symmetric organisms. Priapulids have a conservative morphology, an abundant Cambrian fossil record, and a phylogenetic position that make them a key group in understanding protostome evolution. Here, we characterize gastrulation and the embryonic expression of genes involved in bilaterian foregut and hindgut patterning in Priapulus caudatus. We show that the blastopore gives rise to the anus at the vegetal pole and that the hindgut markers brachyury and caudal are expressed in the blastopore and anus, whereas the foregut markers foxA and goosecoid are expressed in the mouth in the animal hemisphere. Thereby, gastrulation in the conservatively evolving protostome P. caudatus follows strictly a deuterostomic pattern. These results are more compatible with a deuterostomic rather than protostomic (blastopore forms the mouth) or amphistomic (mouth and anus are formed simultaneously) mode of development in the last common bilaterian ancestor.


Developmental Biology | 2011

Evolutionary implications of morphogenesis and molecular patterning of the blind gut in the planarian Schmidtea polychroa

José M. Martín-Durán; Rafael Romero

The formation of a through-gut was a key innovation in the evolution of metazoans. There is still controversy regarding the origin of the anus and how it may have been either gained or lost during evolution in different bilaterian taxa. Thus, the study of groups with a blind gut is of great importance for understanding the evolution of this organ system. Here, we describe the morphogenesis and molecular patterning of the blind gut in the sexual triclad Schmidtea polychroa. We identify and analyze the expression of goosecoid, commonly associated with the foregut, and the GATA, ParaHox and T-box genes, members of which commonly are associated with gut regionalization. We show that GATA456a is expressed in the blind gut of triclads, while GATA456b is localized in dorsal parenchymal cells. Goosecoid is expressed in the central nervous system, and the unique ParaHox gene identified, Xlox, is detected in association with the nervous system. We have not isolated any brachyury gene in the T-box complement of S. polychroa, which consists of one tbx1/10, three tbx2/3 and one tbx20. Furthermore, the absence of genes like brachyury and caudal is also present in other groups of Platyhelminthes. This study suggests that GATA456, in combination with foxA, is a gut-specific patterning mechanism conserved in the triclad S. polychroa, while the conserved gut-associated expression of foregut, midgut and hindgut markers is absent. Based on these data and the deviations in spiral cleavage found in more basal flatworms, we propose that the lack of an anus is an innovation of Platyhelminthes. This may be associated with loss of gut gene expression or even gene loss.


Evodevo | 2012

Developmental diversity in free-living flatworms

José M. Martín-Durán; Bernhard Egger

Flatworm embryology has attracted attention since the early beginnings of comparative evolutionary biology. Considered for a long time the most basal bilaterians, the Platyhelminthes (excluding Acoelomorpha) are now robustly placed within the Spiralia. Despite having lost their relevance to explain the transition from radially to bilaterally symmetrical animals, the study of flatworm embryology is still of great importance to understand the diversification of bilaterians and of developmental mechanisms. Flatworms are acoelomate organisms generally with a simple centralized nervous system, a blind gut, and lacking a circulatory organ, a skeleton and a respiratory system other than the epidermis. Regeneration and asexual reproduction, based on a totipotent neoblast stem cell system, are broadly present among different groups of flatworms. While some more basally branching groups - such as polyclad flatworms - retain the ancestral quartet spiral cleavage pattern, most flatworms have significantly diverged from this pattern and exhibit unique strategies to specify the common adult body plan. Most free-living flatworms (i.e. Platyhelminthes excluding the parasitic Neodermata) are directly developing, whereas in polyclads, also indirect developers with an intermediate free-living larval stage and subsequent metamorphosis are found. A comparative study of developmental diversity may help understanding major questions in evolutionary biology, such as the evolution of cleavage patterns, gastrulation and axial specification, the evolution of larval types, and the diversification and specialization of organ systems. In this review, we present a thorough overview of the embryonic development of the different groups of free-living (turbellarian) platyhelminths, including the Catenulida, Macrostomorpha, Polycladida, Lecithoepitheliata, Proseriata, Bothrioplanida, Rhabdocoela, Fecampiida, Prolecithophora and Tricladida, and discuss their main features under a consensus phylogeny of the phylum.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Stepwise assembly of the Nova-regulated alternative splicing network in the vertebrate brain

Manuel Irimia; Amanda Denuc; Demian Burguera; Ildiko Somorjai; José M. Martín-Durán; Grigory Genikhovich; Senda Jimenez-Delgado; Ulrich Technau; Scott William Roy; Gemma Marfany; Jordi Garcia-Fernàndez

Novel organismal structures in metazoans are often undergirded by complex gene regulatory networks; as such, understanding the emergence of new structures through evolution requires reconstructing the series of evolutionary steps leading to these underlying networks. Here, we reconstruct the step-by-step assembly of the vertebrate splicing network regulated by Nova, a splicing factor that modulates alternative splicing in the vertebrate central nervous system by binding to clusters of YCAY motifs on pre-RNA transcripts. Transfection of human HEK293T cells with Nova orthologs indicated vertebrate-like splicing regulatory activity in bilaterian invertebrates, thus Nova acquired the ability to bind YCAY clusters and perform vertebrate-like splicing modulation at least before the last common ancestor of bilaterians. In situ hybridization studies in several species showed that Nova expression became restricted to CNS later on, during chordate evolution. Finally, comparative genomics studies revealed a diverse history for Nova-regulated exons, with target exons arising through both de novo exon creation and acquisition of YCAY motifs by preexisting exons throughout chordate and vertebrate history. In addition, we find that tissue-specific Nova expression patterns emerged independently in other lineages, suggesting independent assembly of tissue-specific regulatory networks.


Development Genes and Evolution | 2012

Morphological and molecular development of the eyes during embryogenesis of the freshwater planarian Schmidtea polychroa

José M. Martín-Durán; Francisco Monjo; Rafael Romero

Photoreception is one of the most primitive sensory functions in metazoans. Despite the diversity of forms and components of metazoan eyes, many studies have demonstrated the existence of a common cellular and molecular basis for their development. Genes like pax6, sine oculis, eyes absent, dachshund, otx, Rx and atonal are known to be associated with the specification and development of the eyes. In planarians, sine oculis, eyes absent and otxA play an essential role during the formation of the eye after decapitation, whereas pax6, considered by many authors as a master control gene for eye formation, does not seem to be involved in adult eye regeneration. Whether this is a peculiarity of adult planarians or, on the contrary, is also found in embryogenesis remains unknown. Herein, we characterize embryonic eye development in the planarian species Schmidtea polychroa using histological sections and molecular markers. Additionally, we analyse the expression pattern of the pax6–sine oculis–eyes absent–dachshund network, and the genes Rx, otxA, otxB and atonal. We demonstrate that eye formation in planarian embryos shows great similarities to adult eye regeneration, both at the cellular and molecular level. We thus conclude that planarian eyes exhibit divergent molecular patterning mechanisms compared to the prototypic ancestral metazoan eye.


BMC Biology | 2015

The study of Priapulus caudatus reveals conserved molecular patterning underlying different gut morphogenesis in the Ecdysozoa

José M. Martín-Durán; Andreas Hejnol

BackgroundThe digestive systems of animals can become highly specialized in response to their exploration and occupation of new ecological niches. Although studies on different animals have revealed commonalities in gut formation, the model systems Caenorhabditis elegans and Drosophila melanogaster, which belong to the invertebrate group Ecdysozoa, exhibit remarkable deviations in how their intestines develop. Their morphological and developmental idiosyncrasies have hindered reconstructions of ancestral gut characters for the Ecdysozoa, and limit comparisons with vertebrate models. In this respect, the phylogenetic position, and slow evolving morphological and molecular characters of marine priapulid worms advance them as a key group to decipher evolutionary events that occurred in the lineages leading to C. elegans and D. melanogaster.ResultsIn the priapulid Priapulus caudatus, the gut consists of an ectodermal foregut and anus, and a mid region of at least partial endodermal origin. The inner gut develops into a 16-cell primordium devoid of visceral musculature, arranged in three mid tetrads and two posterior duplets. The mouth invaginates ventrally and shifts to a terminal anterior position as the ventral anterior ectoderm differentially proliferates. Contraction of the musculature occurs as the head region retracts into the trunk and resolves the definitive larval body plan. Despite obvious developmental differences with C. elegans and D. melanogaster, the expression in P. caudatus of the gut-related candidate genes NK2.1, foxQ2, FGF8/17/18, GATA456, HNF4, wnt1, and evx demonstrate three distinct evolutionarily conserved molecular profiles that correlate with morphologically identified sub-regions of the gut.ConclusionsThe comparative analysis of priapulid development suggests that a midgut formed by a single endodermal population of vegetal cells, a ventral mouth, and the blastoporal origin of the anus are ancestral features in the Ecdysozoa. Our molecular data on P. caudatus reveal a conserved ecdysozoan gut-patterning program and demonstrates that extreme morphological divergence has not been accompanied by major molecular innovations in transcriptional regulators during digestive system evolution in the Ecdysozoa. Our data help us understand the origins of the ecdysozoan body plan, including those of C. elegans and D. melanogaster, and this is critical for comparisons between these two prominent model systems and their vertebrate counterparts.


Nature Ecology and Evolution | 2016

The developmental basis for the recurrent evolution of deuterostomy and protostomy

José M. Martín-Durán; Yale J. Passamaneck; Mark Q. Martindale; Andreas Hejnol

The mouth opening of bilaterian animals develops either separate from (deuterostomy) or connected to (protostomy) the embryonic blastopore, the site of endomesoderm internalization. Although this distinction preluded the classification of bilaterian animals in Deuterostomia and Protostomia, and has influenced major scenarios of bilaterian evolution, the developmental basis for the appearance of these different embryonic patterns remains unclear. To identify the underlying mechanisms, we compared the development of two brachiopod species that show deuterostomy (Novocrania anomala) and protostomy (Terebratalia transversa), respectively. We show that the differential activity of Wnt signalling, together with the timing and location of mesoderm formation, correlate with the differential behaviour and fate of the blastopore. We further assess these principles in the spiral-cleaving group Annelida, and propose that the developmental relationships of mouth and blastoporal openings are secondary by-products of variations in axial and mesoderm development. This challenges the previous evolutionary emphasis on extant blastoporal behaviours to explain the origin and diversification of bilaterian animals.


The International Journal of Developmental Biology | 2014

Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria

Cristina Grande; José M. Martín-Durán; Nathan J. Kenny; Marta Truchado-Garcia; Andreas Hejnol

Since the discovery that the TGF-β signalling molecule Nodal and its downstream effector Pitx have a parallel role in establishing asymmetry between molluscs and deuterostomes the debate over the degree to which this signalling pathway is conserved across the Bilateria as a whole has been ongoing. Further taxon sampling is critical to understand the evolution and divergence of this signalling pathway in animals. Using genome and transcriptome mining we confirmed the presence of nodal and Pitx in a range of additional animal taxa for which their presence has not yet been described. In situ hybridization was used to show the embryonic expression of these genes in brachiopods and planarians. We show that both nodal and Pitx genes are broadly conserved across the Spiralia, and nodal likely appeared in the Bilaterian stem lineage after the divergence of the Acoelomorpha. Furthermore, both nodal and Pitx mRNA appears to be expressed in an asymmetric fashion in the brachiopod Terebratalia transversa. No evidence for the presence of a Lefty ortholog could be found in the non-deuterostome genomic resources examined. Nodal expression is asymmetric in a number of spiralian lineages, indicating a possible ancestral role of the Nodal/Pitx cascade in the establishment of asymmetries across the Bilateria.


Nature | 2017

Convergent evolution of bilaterian nerve cords

José M. Martín-Durán; Kevin Pang; Aina Børve; Henrike Semmler Lê; Anlaug Furu; Johanna T. Cannon; Ulf Jondelius; Andreas Hejnol

It has been hypothesized that a condensed nervous system with a medial ventral nerve cord is an ancestral character of Bilateria. The presence of similar dorsoventral molecular patterns along the nerve cords of vertebrates, flies, and an annelid has been interpreted as support for this scenario. Whether these similarities are generally found across the diversity of bilaterian neuroanatomies is unclear, and thus the evolutionary history of the nervous system is still contentious. Here we study representatives of Xenacoelomorpha, Rotifera, Nemertea, Brachiopoda, and Annelida to assess the conservation of the dorsoventral nerve cord patterning. None of the studied species show a conserved dorsoventral molecular regionalization of their nerve cords, not even the annelid Owenia fusiformis, whose trunk neuroanatomy parallels that of vertebrates and flies. Our findings restrict the use of molecular patterns to explain nervous system evolution, and suggest that the similarities in dorsoventral patterning and trunk neuroanatomies evolved independently in Bilateria.

Collaboration


Dive into the José M. Martín-Durán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge