Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José M. Montoya is active.

Publication


Featured researches published by José M. Montoya.


Nature | 2006

Ecological networks and their fragility

José M. Montoya; Stuart L. Pimm; Ricard V. Solé

Darwin used the metaphor of a ‘tangled bank’ to describe the complex interactions between species. Those interactions are varied: they can be antagonistic ones involving predation, herbivory and parasitism, or mutualistic ones, such as those involving the pollination of flowers by insects. Moreover, the metaphor hints that the interactions may be complex to the point of being impossible to understand. All interactions can be visualized as ecological networks, in which species are linked together, either directly or indirectly through intermediate species. Ecological networks, although complex, have well defined patterns that both illuminate the ecological mechanisms underlying them and promise a better understanding of the relationship between complexity and ecological stability.


arXiv: Disordered Systems and Neural Networks | 2001

Complexity and Fragility in Ecological Networks

Ricard V. Solé; José M. Montoya

A detailed analysis of three species–rich ecosystem food webs has shown that they display skewed distributions of connections. Such graphs of interaction are, in fact, shared by a number of biological and technological networks, which have been shown to display a very high homeostasis against random removals of nodes. Here, we analyse the responses of these ecological graphs to both random and selective perturbations (directed against the most–connected species). Our results suggest that ecological networks are very robust against random removals but can be extremely fragile when selective attacks are used. These observations have important consequences for biodiversity dynamics and conservation issues, current estimations of extinction rates and the relevance and definition of keystone species.


Trends in Ecology and Evolution | 2009

Emerging horizons in biodiversity and ecosystem functioning research

Julia Reiss; Jon R. Bridle; José M. Montoya; Guy Woodward

Two decades of intensive research have provided compelling evidence for a link between biodiversity and ecosystem functioning (B-EF). Whereas early B-EF research concentrated on species richness and single processes, recent studies have investigated different measures of both biodiversity and ecosystem functioning, such as functional diversity and joint metrics of multiple processes. There is also a shift from viewing assemblages in terms of their contribution to particular processes toward placing them within a wider food web context. We review how the responses and predictors in B-EF experiments are quantified and how biodiversity effects are shaped by multitrophic interactions. Further, we discuss how B-EF metrics and food web relations could be addressed simultaneously. We conclude that addressing traits, multiple processes and food web interactions is needed to capture the mechanisms that underlie B-EF relations in natural assemblages.


Philosophical Transactions of the Royal Society B | 2010

Warming alters the metabolic balance of ecosystems

Gabriel Yvon-Durocher; J. Iwan Jones; Guy Woodward; José M. Montoya

The carbon cycle modulates climate change, via the regulation of atmospheric CO2, and it represents one of the most important services provided by ecosystems. However, considerable uncertainties remain concerning potential feedback between the biota and the climate. In particular, it is unclear how global warming will affect the metabolic balance between the photosynthetic fixation and respiratory release of CO2 at the ecosystem scale. Here, we present a combination of experimental field data from freshwater mesocosms, and theoretical predictions derived from the metabolic theory of ecology to investigate whether warming will alter the capacity of ecosystems to absorb CO2. Our manipulative experiment simulated the temperature increases predicted for the end of the century and revealed that ecosystem respiration increased at a faster rate than primary production, reducing carbon sequestration by 13 per cent. These results confirmed our theoretical predictions based on the differential activation energies of these two processes. Using only the activation energies for whole ecosystem photosynthesis and respiration we provide a theoretical prediction that accurately quantified the precise magnitude of the reduction in carbon sequestration observed experimentally. We suggest the combination of whole-ecosystem manipulative experiments and ecological theory is one of the most promising and fruitful research areas to predict the impacts of climate change on key ecosystem services.


Nature | 2012

Reconciling the temperature dependence of respiration across timescales and ecosystem types

Gabriel Yvon-Durocher; Jane M. Caffrey; Alessandro Cescatti; Matteo Dossena; Paul A. del Giorgio; Josep M. Gasol; José M. Montoya; Jukka Pumpanen; Peter A. Staehr; Guy Woodward; Andrew P. Allen

Ecosystem respiration is the biotic conversion of organic carbon to carbon dioxide by all of the organisms in an ecosystem, including both consumers and primary producers. Respiration exhibits an exponential temperature dependence at the subcellular and individual levels, but at the ecosystem level respiration can be modified by many variables including community abundance and biomass, which vary substantially among ecosystems. Despite its importance for predicting the responses of the biosphere to climate change, it is as yet unknown whether the temperature dependence of ecosystem respiration varies systematically between aquatic and terrestrial environments. Here we use the largest database of respiratory measurements yet compiled to show that the sensitivity of ecosystem respiration to seasonal changes in temperature is remarkably similar for diverse environments encompassing lakes, rivers, estuaries, the open ocean and forested and non-forested terrestrial ecosystems, with an average activation energy similar to that of the respiratory complex (approximately 0.65 electronvolts (eV)). By contrast, annual ecosystem respiration shows a substantially greater temperature dependence across aquatic (approximately 0.65 eV) versus terrestrial ecosystems (approximately 0.32 eV) that span broad geographic gradients in temperature. Using a model derived from metabolic theory, these findings can be reconciled by similarities in the biochemical kinetics of metabolism at the subcellular level, and fundamental differences in the importance of other variables besides temperature—such as primary productivity and allochthonous carbon inputs—on the structure of aquatic and terrestrial biota at the community level.


Advances in Ecological Research | 2010

Ecological Networks in a Changing Climate

Guy Woodward; Jonathan P. Benstead; Oliver S. Beveridge; Julia L. Blanchard; Thomas Brey; Lee E. Brown; Wyatt F. Cross; Nikolai Friberg; Thomas C. Ings; Ute Jacob; Simon Jennings; Mark E. Ledger; Alexander M. Milner; José M. Montoya; Eoin J. O'Gorman; Jens M. Olesen; Owen L. Petchey; Doris E. Pichler; Daniel C. Reuman; Murray S. A. Thompson; F. J. Frank van Veen; Gabriel Yvon-Durocher

Summary Attempts to gauge the biological impacts of climate change have typically focussed on the lower levels of organization (individuals to populations), rather than considering more complex multi-species systems, such as entire ecological networks (food webs, mutualistic and host–parasitoid networks). We evaluate the possibility that a few principal drivers underpin network-level responses to climate change, and that these drivers can be studied to develop a more coherent theoretical framework than is currently provided by phenomenological approaches. For instance, warming will elevate individual ectotherm metabolic rates, and direct and indirect effects of changes in atmospheric conditions are expected to alter the stoichiometry of interactions between primary consumers and basal resources; these effects are general and pervasive, and will permeate through the entire networks that they affect. In addition, changes in the density and viscosity of aqueous media could alter interactions among very small organisms and disrupt the pycnoclines that currently compartmentalize many aquatic networks in time and space. We identify a range of approaches and potential model systems that are particularly well suited to network-level studies within the context of climate change. We also highlight potentially fruitful areas of research with a view to improving our predictive power regarding climate change impacts on networks. We focus throughout on mechanistic approaches rooted in first principles that demonstrate potential for application across a wide range of taxa and systems.


Philosophical Transactions of the Royal Society B | 2010

Climate change, biotic interactions and ecosystem services

José M. Montoya; Dave Raffaelli

Climate change is real. The wrangling debates are over, and we now need to move onto a predictive ecology that will allow managers of landscapes and policy makers to adapt to the likely changes in biodiversity over the coming decades. There is ample evidence that ecological responses are already occurring at the individual species (population) level. The challenge is how to synthesize the growing list of such observations with a coherent body of theory that will enable us to predict where and when changes will occur, what the consequences might be for the conservation and sustainable use of biodiversity and what we might do practically in order to maintain those systems in as good condition as possible. It is thus necessary to investigate the effects of climate change at the ecosystem level and to consider novel emergent ecosystems composed of new species assemblages arising from differential rates of range shifts of species. Here, we present current knowledge on the effects of climate change on biotic interactions and ecosystem services supply, and summarize the papers included in this volume. We discuss how resilient ecosystems are in the face of the multiple components that characterize climate change, and suggest which current ecological theories may be used as a starting point to predict ecosystem-level effects of climate change.


Philosophical Transactions of the Royal Society B | 2010

Warming effects on marine microbial food web processes: how far can we go when it comes to predictions?

Hugo Sarmento; José M. Montoya; Evaristo Vázquez-Domínguez; Dolors Vaqué; Josep M. Gasol

Previsions of a warmer ocean as a consequence of climatic change point to a 2–6°C temperature rise during this century in surface oceanic waters. Heterotrophic bacteria occupy the central position of the marine microbial food web, and their metabolic activity and interactions with other compartments within the web are regulated by temperature. In particular, key ecosystem processes like bacterial production (BP), respiration (BR), growth efficiency and bacterial–grazer trophic interactions are likely to change in a warmer ocean. Different approaches can be used to predict these changes. Here we combine evidence of the effects of temperature on these processes and interactions coming from laboratory experiments, space-for-time substitutions, long-term data from microbial observatories and theoretical predictions. Some of the evidence we gathered shows opposite trends to warming depending on the spatio-temporal scale of observation, and the complexity of the system under study. In particular, we show that warming (i) increases BR, (ii) increases bacterial losses to their grazers, and thus bacterial–grazer biomass flux within the microbial food web, (iii) increases BP if enough resources are available (as labile organic matter derived from phytoplankton excretion or lysis), and (iv) increases bacterial losses to grazing at lower rates than BP, and hence decreasing the proportion of production removed by grazers. As a consequence, bacterial abundance would also increase and reinforce the already dominant role of microbes in the carbon cycle of a warmer ocean.


Ecology Letters | 2013

On the dimensionality of ecological stability

Ian Donohue; Owen L. Petchey; José M. Montoya; Andrew L. Jackson; Luke McNally; Mafalda Viana; Kevin Healy; Miguel Lurgi; Nessa E. O'Connor; Mark Emmerson

Ecological stability is touted as a complex and multifaceted concept, including components such as variability, resistance, resilience, persistence and robustness. Even though a complete appreciation of the effects of perturbations on ecosystems requires the simultaneous measurement of these multiple components of stability, most ecological research has focused on one or a few of those components analysed in isolation. Here, we present a new view of ecological stability that recognises explicitly the non-independence of components of stability. This provides an approach for simplifying the concept of stability. We illustrate the concept and approach using results from a field experiment, and show that the effective dimensionality of ecological stability is considerably lower than if the various components of stability were unrelated. However, strong perturbations can modify, and even decouple, relationships among individual components of stability. Thus, perturbations not only increase the dimensionality of stability but they can also alter the relationships among components of stability in different ways. Studies that focus on single forms of stability in isolation therefore risk underestimating significantly the potential of perturbations to destabilise ecosystems. In contrast, application of the multidimensional stability framework that we propose gives a far richer understanding of how communities respond to perturbations.


Ecology | 2009

Press perturbations and indirect effects in real food webs

José M. Montoya; Guy Woodward; Mark Emmerson; Ricard V. Solé

The prediction of the effects of disturbances in natural systems is limited by the general lack of knowledge on the strength of species interactions, i.e., the effect of one species on the population growth rate of another, and by the uncertainty of the effects that may be manifested via indirect pathways within the food web. Here we explored the consequences of changes in species populations for the remaining species within nine exceptionally well-characterized empirical food webs, for which, unlike the vast majority of other published webs, feeding links have been fully quantified. Using the inverse of the Jacobian matrix, we found that perturbations to species with few connections have larger net effects (considering both direct and indirect pathways between two species) on the rest of the food web than do disturbances to species that are highly connected. For 40% of predator-prey links, predators had positive net effects on prey populations, due to the predominance of indirect interactions. Our results highlight the fundamental, but often counterintuitive, role of indirect effects for the maintenance of food web complexity and biodiversity.

Collaboration


Dive into the José M. Montoya's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guy Woodward

Imperial College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Emmerson

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge