José M. Rojas
Spanish National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José M. Rojas.
Journal of Leukocyte Biology | 2015
Roberto Spada; José M. Rojas; Sonia Pe´rez-Yagu¨e; Vladimir Mulens; Pablo Cannata-Ortiz; Rafael Bragado; Domingo F. Barber
NK cells are a major component of the immune system, and alterations in their activity are correlated with various autoimmune diseases. In the present work, we observed an increased expression of the NKG2D ligand MICA in SLE patients’ kidneys but not healthy subjects. We also show glomerulus‐specific expression of the NKG2D ligands Rae‐1 and Mult‐1 in various murine SLE models, which correlated with a higher number of glomerular‐infiltrating NK cells. As the role of NK cells in the immunopathogenesis of SLE is poorly understood, we explored NK cell differentiation and activity in tissues and organs in SLE‐prone murine models by use of diseased and prediseased MRL/MpJ and MRL/lpr mice. We report here that phenotypically iNK cells accumulate only in the spleen but not in BM or kidneys of diseased mice. Infiltrating NK cells in kidneys undergoing a lupus nephritic process showed a more mature, activated phenotype compared with kidney, as well as peripheral NK cells from prediseased mice, as determined by IFN‐γ and STAT5 analysis. These findings and the presence of glomerulus‐specific NKG2D ligands in lupus‐prone mice identify a role for NK cells and NKG2D ligands in the lupus nephritic process, which could aid in understanding their role in human SLE.
Journal of Immunology | 2014
Abel Suárez-Fueyo; José M. Rojas; Ariel E. Cariaga; Esther García; Bart H. Steiner; Domingo F. Barber; Kamal D. Puri; Ana C. Carrera
Systemic lupus erythematosus (SLE) is a human chronic inflammatory disease generated and maintained throughout life by autoreactive T and B cells. Class I phosphoinositide 3-kinases (PI3K) are heterodimers composed of a regulatory and a catalytic subunit that catalyze phosphoinositide-3,4,5-P3 formation and regulate cell survival, migration, and division. Activity of the PI3Kδ isoform is enhanced in human SLE patient PBLs. In this study, we analyzed the effect of inhibiting PI3Kδ in MRL/lpr mice, a model of human SLE. We found that PI3Kδ inhibition ameliorated lupus progression. Treatment of these mice with a PI3Kδ inhibitor reduced the excessive numbers of CD4+ effector/memory cells and B cells. In addition, this treatment reduced serum TNF-α levels and the number of macrophages infiltrating the kidney. Expression of inactive PI3Kδ, but not deletion of the other hematopoietic isoform PI3Kγ, reduced the ability of macrophages to cross the basement membrane, a process required to infiltrate the kidney, explaining MRL/lpr mice improvement by pharmacologic inhibition of PI3Kδ. The observations that p110δ inhibitor prolonged mouse life span, reduced disease symptoms, and showed no obvious secondary effects indicates that PI3Kδ is a promising target for SLE.
Journal of Leukocyte Biology | 2015
Roberto Spada; José M. Rojas; Domingo F. Barber
Systemic lupus erythematosus is a chronic, multifactorial autoimmune disease of complex etiology, characterized by loss of tolerance to nuclear autoantigens, expansion of autoreactive T and B cell clones, polyclonal B cell activation that gives rise to hypergammaglobulinemia, and increased autoantibody production, as well as immune complex deposition and multiorgan tissue inflammation. As disease progresses, immune cells, mainly T cells and macrophages, infiltrate affected organs and amplify the local inflammatory response. Natural killer cells are large, granular lymphocytes that are an important link between the innate and adaptive immune systems; variations in their activity correlate with several autoimmune diseases. To date, the literature has disregarded natural killer cells as relevant modulators in systemic lupus erythematosus pathogenesis, as these cells are few in number and show a dysfunctional phenotype in patients with active systemic lupus erythematosus. This review focuses on research that could help define the role of natural killer cells in systemic lupus erythematosus and their function in regulating this autoimmune disorder in nonlymphoid organs.
Veterinary Research | 2014
José M. Rojas; Lourdes Peña; Verónica Martín; Noemí Sevilla
Bluetongue virus (BTV) is a non-enveloped dsRNA virus that causes a haemorrhagic disease mainly in sheep. It is an economically important Orbivirus of the Reoviridae family. In order to estimate the importance of T cell responses during BTV infection, it is essential to identify the epitopes targeted by the immune system. In the present work, we selected potential T cell epitopes (3 MHC-class II-binding and 8 MHC-class I binding peptides) for the C57BL/6 mouse strain from the BTV-8 non-structural protein NS1, using H2b-binding predictive algorithms. Peptide binding assays confirmed all MHC-class I predicted peptides bound MHC-class I molecules. The immunogenicity of these 11 predicted peptides was then determined using splenocytes from BTV-8-inoculated C57BL/6 mice. Four MHC-class I binding peptides elicited specific IFN-γ production and generated cytotoxic T lymphocytes (CTL) in BTV-8 infected mice. CTL specific for 2 of these peptides were also able to recognise target cells infected with different BTV serotypes. Similarly, using a combination of IFN-γ ELISPOT, intracellular cytokine staining and proliferation assays, two MHC-class II peptides were identified as CD4+ T cell epitopes in BTV-8 infected mice. Importantly, two peptides were also consistently immunogenic in sheep infected with BTV-8 using IFN-γ ELISPOT assays. Both of these peptides stimulated CD4+ T cells that cross-reacted with other BTV serotypes. The characterisation of these T cell epitopes can help develop vaccines protecting against a broad spectrum of BTV serotypes and differentiate infected from vaccinated animals.
Nanomedicine: Nanotechnology, Biology and Medicine | 2016
José M. Rojas; Laura Sanz-Ortega; Vladimir Mulens-Arias; Lucía Gutiérrez; Sonia Pérez-Yagüe; Domingo F. Barber
UNLABELLED Superparamagnetic iron oxide nanoparticles (SPIONs) have shown promise as contrast agents and nanocarriers for drug delivery. Their impact on M2-polarised macrophages has nonetheless not been well studied. Here we explored the effects of SPIONs coated with dimercaptosuccinic acid, aminopropyl silane or aminodextran in two M2 macrophage models (murine primary IL-4-activated bone marrow-derived macrophages and human M2-like differentiated THP-1 cells). All SPIONs were internalised and no cell toxicity was observed. SPION treatment produced reactive oxygen species and activated the extracellular signal-regulated kinase and AKT pathways. After 24-h SPION incubation, M2 macrophages switched their iron metabolism towards an iron-replete state. SPION treatment in both M2 macrophage models altered their M2 activation profiles, promoted IL-10 production, and stimulated protease-dependent invasion. These results highlight the need to evaluate the interactions between SPIONs and cells to take full advantage of the intrinsic properties of these nanoparticles in biological systems. FROM THE CLINICAL EDITOR Superparamagnetic iron oxide nanoparticles (SPIONs) have been used as an MRI contrast agent in many experimental studies. The authors here investigated the effects of these nanoparticles on M2 macrophages after cellular uptake. The findings of cell activation further enhanced our current knowledge on the interaction of SPIONS with macrophages.
Vaccine | 2014
José M. Rojas; Héctor Moreno; Aída García; Juan C. Ramirez; Noemí Sevilla; Verónica Martín
Peste des petits ruminants is a highly contagious disease of small ruminants caused by a Morbillivirus, peste des petits ruminants virus (PPRV). Two recombinant replication-defective human adenovirus serotype 5 (Ad5) containing the highly immunogenic fusion protein (F) and hemaglutinine protein (H) genes from PPRV were constructed. HEK293A cells infected with either virus (Ad5-PPRV-F or -H) express F and H proteins respectively. These viruses were used to vaccinate mice by intramuscular inoculation. Both viruses elicited PPRV-specific B- and T-cell responses. Thus, after two immunizations, sera from immunized mice elicited neutralizing antibody response, indicating that this approach has the potential to confer protective immunity. In addition, we detected a significant antigen specific CD4(+) and CD8(+) T-cell response in mice vaccinated with either virus. These results indicate that these adenovirus constructs offer a promising alternative to current vaccine strategies for the development of PPRV DIVA vaccines.
Acta Biomaterialia | 2017
José M. Rojas; Helena Gavilán; Vanesa del Dedo; Eduardo Lorente-Sorolla; Laura Sanz-Ortega; Gustavo B. da Silva; Rocío Costo; Sonia Pérez-Yagüe; Marina Talelli; Marzia Marciello; M. Puerto Morales; Domingo F. Barber; Lucía Gutiérrez
To successfully develop biomedical applications for magnetic nanoparticles, it is imperative that these nanoreagents maintain their magnetic properties in vivo and that their by-products are safely metabolized. When placed in biological milieu or internalized into cells, nanoparticle aggregation degree can increase which could affect magnetic properties and metabolization. To evaluate these aggregation effects, we synthesized citric acid-coated iron oxide nanoparticles whose magnetic susceptibility can be modified by aggregation in agar dilutions and dextran-layered counterparts that maintain their magnetic properties unchanged. Macrophage models were used for in vitro uptake and metabolization studies, as these cells control iron homeostasis in the organism. Electron microscopy and magnetic susceptibility studies revealed a cellular mechanism of nanoparticle degradation, in which a small fraction of the particles is rapidly degraded while the remaining ones maintain their size. Both nanoparticle types produced similar iron metabolic profiles but these profiles differed in each macrophage model. Thus, nanoparticles induced iron responses that depended on macrophage programming. In vivo studies showed that nanoparticles susceptible to changes in magnetic properties through aggregation effects had different behavior in lungs, liver and spleen. Liver ferritin levels increased in these animals showing that nanoparticles are degraded and their by-products incorporated into normal metabolic routes. These data show that nanoparticle iron metabolization depends on cell type and highlight the necessity to assess nanoparticle aggregation in complex biological systems to develop effective in vivo biomedical applications. STATEMENT OF SIGNIFICANCE Magnetic iron oxide nanoparticles have great potential for biomedical applications. It is however imperative that these nanoreagents preserve their magnetic properties once inoculated, and that their degradation products can be eliminated. When placed in a biological milieu nanoparticles can aggregate and this can affect their magnetic properties and their degradation. In this work, we showed that iron oxide nanoparticles trigger the iron metabolism in macrophages, the main cell type involved in iron homeostasis in the organism. We also show that aggregation can affect nanoparticle magnetic properties when inoculated in animal models. This work confirms iron oxide nanoparticle biocompatibility and highlights the necessity to assess in vivo nanoparticle aggregation to successfully develop biomedical applications.
Journal of Leukocyte Biology | 2016
José M. Rojas; Roberto Spada; Laura Sanz-Ortega; Laura Morillas; Raquel Mejías; Vladimir Mulens-Arias; Sonia Pérez-Yagüe; Domingo F. Barber
Activation of NK cells depends on a balance between activating and inhibitory signals. Class Ia PI3K are heterodimeric proteins with a catalytic and a regulatory subunit and have a central role in cell signaling by associating with tyrosine kinase receptors to trigger signaling cascades. The regulatory p85 subunit participates in signaling through NKG2D, one of the main activating receptors on NK cells, via its interaction with the adaptor protein DAP10. Although the effects of inhibiting catalytic subunits or deleting the regulatory p85α subunit have been studied, little attention has focused on the role of the p85β subunit in NK cells. Using p85β knockout mice, we found that p85β deficiency does not alter NK cell differentiation and maturation in spleen or bone marrow. NK cells from p85β−/− mice nonetheless produced more IFN‐γ and degranulated more effectively when stimulated with anti‐NKG2D antibody. These cells also degranulated and killed NKG2D ligand‐expressing target cells more efficiently. We show that p85β deficiency impaired NKG2D internalization, which could contribute to the activated phenotype. Decreasing p85β subunit protein levels might thus constitute a therapeutic target to promote NK cell activity toward NKG2D ligand‐expressing cells.
Journal of Controlled Release | 2015
Mulens-Arias; José M. Rojas; Sonia Pérez-Yagüe; Morales Mdel P; Domingo F. Barber
Due to its aggressive behavior, pancreatic cancer is one of the principal causes of cancer-related deaths. The highly metastatic potential of pancreatic tumor cells demands the development of more effective anti-metastatic approaches for this disease. Although polyethylenimine-coated superparamagnetic iron oxide nanoparticles (PEI-coated SPIONs) have been studied for their utility as transfection agents, little is known of their effect on tumor cell biology. Here we demonstrated that PEI-coated SPIONs have potent inhibitory effects on pancreatic tumor cell migration/invasion, through inhibition of Src kinase and decreased expression of MT1-MMP and MMP2 metalloproteinases. When treated with PEI-coated SPIONs, the pancreatic tumor cell line Pan02 showed reduced invadosome density and thus, a decrease in their ability to invade through basement membrane. These nanoparticles temporarily downmodulated microRNA-21, thereby upregulating the cell migration inhibitors PTEN, PDCD4 and Sprouty-1. PEI-coated SPIONs thus show intrinsic, possibly anti-metastatic properties for modulating pancreatic tumor cell migration machinery, which indicates their potential as anti-metastatic agents for treatment of pancreatic cancer.
Veterinary Research | 2017
José M. Rojas; Miguel Avia; Elena Pascual; Noemí Sevilla; Verónica Martín
Peste des petits ruminants virus (PPRV) causes an economically important disease that limits productivity in small domestic ruminants and often affects the livestock of the poorest populations in developing countries. Animals that survive PPRV develop strong cellular and humoral responses, which are probably necessary for protection. Vaccination should thus aim at mimicking these natural responses. Immunization strategies against this morbillivirus using recombinant adenoviruses expressing PPRV-F or -H proteins can protect PPRV-challenged animals and permit differentiation of infected from vaccinated animals. Little is known of the T cell repertoire these recombinant vaccines induce. In the present work, we identified several CD4+ and CD8+ T cell epitopes in sheep infected with PPRV. We also show that recombinant adenovirus vaccination induced T cell responses to the same epitopes, and led to memory T cell differentiation. T cells primed by these recombinant adenovirus vaccines expanded after PPRV challenge and probably contributed to protection. These data validate the use of recombinant adenovirus expressing PPRV genes as DIVA strategies to control this highly contagious disease.