Jose Manuel Garcia Manteiga
Vita-Salute San Raffaele University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jose Manuel Garcia Manteiga.
PLOS ONE | 2013
Michela Riba; Marco Rausa; Melissa Sorosina; Davide Cittaro; Jose Manuel Garcia Manteiga; Antonella Nai; Alessia Pagani; Filippo Martinelli-Boneschi; Elia Stupka; Clara Camaschella; Laura Silvestri
Control of systemic iron homeostasis is interconnected with the inflammatory response through the key iron regulator, the antimicrobial peptide hepcidin. We have previously shown that mice with iron deficiency anemia (IDA)-low hepcidin show a pro-inflammatory response that is blunted in iron deficient-high hepcidin Tmprss6 KO mice. The transcriptional response associated with chronic hepcidin overexpression due to genetic inactivation of Tmprss6 is unknown. By using whole genome transcription profiling of the liver and analysis of spleen immune-related genes we identified several functional pathways differentially expressed in Tmprss6 KO mice, compared to IDA animals and thus irrespective of the iron status. In the effort of defining genes potentially targets of Tmprss6 we analyzed liver gene expression changes according to the genotype and independently of treatment. Tmprss6 inactivation causes down-regulation of liver pathways connected to immune and inflammatory response as well as spleen genes related to macrophage activation and inflammatory cytokines production. The anti-inflammatory status of Tmprss6 KO animals was confirmed by the down-regulation of pathways related to immunity, stress response and intracellular signaling in both liver and spleen after LPS treatment. Opposite to Tmprss6 KO mice, Hfe−/− mice are characterized by iron overload with inappropriately low hepcidin levels. Liver expression profiling of Hfe−/− deficient versus iron loaded mice show the opposite expression of some of the genes modulated by the loss of Tmprss6. Altogether our results confirm the anti-inflammatory status of Tmprss6 KO mice and identify new potential target pathways/genes of Tmprss6.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Maya Fedeli; Michela Riba; Jose Manuel Garcia Manteiga; Lei Tian; Valentina Viganò; Grazisa Rossetti; Massimiliano Pagani; Changchun Xiao; Adrian Liston; Elia Stupka; Davide Cittaro; Sergio Abrignani; Paolo Provero; Paolo Dellabona; Giulia Casorati
Significance CD1d-restricted invariant natural killer T (iNKT) cells are innate-like T lymphocytes that play fundamental roles in cancer, autoimmunity, and infections. iNKT cells acquire effector functions already in the thymus, because of a distinct developmentally regulated genetic program that is critically controlled by miRNAs. Our study unveils the unexpected requirement for miRNA-dependent fine-tuning of TGF-β signaling in the control of iNKT cell development and functional differentiation. The targeting of a lineage-specific cytokine signaling by miRNA represents a previously unknown level of developmental regulation in the thymus. Furthermore, our study provides a comprehensive atlas of miRNA-regulated molecular pathways involved in iNKT cell ontogenesis, and highlights molecular pathways targeted by defined miRNAs that are predicted to be involved in the development and maturation of CD1d-restricted iNKT cells. Invariant natural killer T cells (iNKT) cells are T lymphocytes displaying innate effector functions, acquired through a distinct thymic developmental program regulated by microRNAs (miRNAs). Deleting miRNAs by Dicer ablation (Dicer KO) in thymocytes selectively impairs iNKT cell survival and functional differentiation. To unravel this miRNA-dependent program, we systemically identified transcripts that were differentially expressed between WT and Dicer KO iNKT cells at different differentiation stages and predicted to be targeted by the iNKT cell-specific miRNAs. TGF-β receptor II (TGF-βRII), critically implicated in iNKT cell differentiation, was found up-regulated in iNKT Dicer KO cells together with enhanced TGF-β signaling. miRNA members of the miR-17∼92 family clusters were predicted to target Tgfbr2 mRNA upon iNKT cell development. iNKT cells lacking all three miR-17∼92 family clusters (miR-17∼92, miR-106a∼363, miR-106b∼25) phenocopied both increased TGF-βRII expression and signaling, and defective effector differentiation, displayed by iNKT Dicer KO cells. Consistently, genetic ablation of TGF-β signaling in the absence of miRNAs rescued iNKT cell differentiation. These results elucidate the global impact of miRNAs on the iNKT cell developmental program and uncover the targeting of a lineage-specific cytokine signaling by miRNAs as a mechanism regulating innate-like T-cell development and effector differentiation.
PLOS ONE | 2014
Alessandra Perfetti; Simona Greco; Pasquale Fasanaro; Enrico Bugiardini; Rosanna Cardani; Jose Manuel Garcia Manteiga; Michela Riba; Davide Cittaro; Elia Stupka; Giovanni Meola; Fabio Martelli
Myotonic dystrophy type 2 (DM2) is a genetic, autosomal dominant disease due to expansion of tetraplet (CCTG) repetitions in the first intron of the ZNF9/CNBP gene. DM2 is a multisystemic disorder affecting the skeletal muscle, the heart, the eye and the endocrine system. According to the proposed pathological mechanism, the expanded tetraplets have an RNA toxic effect, disrupting the splicing of many mRNAs. Thus, the identification of aberrantly spliced transcripts is instrumental for our understanding of the molecular mechanisms underpinning the disease. The aim of this study was the identification of new aberrant alternative splicing events in DM2 patients. By genome wide analysis of 10 DM2 patients and 10 controls (CTR), we identified 273 alternative spliced exons in 218 genes. While many aberrant splicing events were already identified in the past, most were new. A subset of these events was validated by qPCR assays in 19 DM2 and 15 CTR subjects. To gain insight into the molecular pathways involving the identified aberrantly spliced genes, we performed a bioinformatics analysis with Ingenuity system. This analysis indicated a deregulation of development, cell survival, metabolism, calcium signaling and contractility. In conclusion, our genome wide analysis provided a database of aberrant splicing events in the skeletal muscle of DM2 patients. The affected genes are involved in numerous pathways and networks important for muscle physio-pathology, suggesting that the identified variants may contribute to DM2 pathogenesis.
Scientific Reports | 2016
Michela Riba; Jose Manuel Garcia Manteiga; Berislav Bošnjak; Davide Cittaro; Pavol Mikolka; Connie Le; Michelle M. Epstein; Elia Stupka
Systems biology provides opportunities to fully understand the genes and pathways in disease pathogenesis. We used literature knowledge and unbiased multiple data meta-analysis paradigms to analyze microarray datasets across different mouse strains and acute allergic asthma models. Our combined gene-driven and pathway-driven strategies generated a stringent signature list totaling 933 genes with 41% (440) asthma-annotated genes and 59% (493) ignorome genes, not previously associated with asthma. Within the list, we identified inflammation, circadian rhythm, lung-specific insult response, stem cell proliferation domains, hubs, peripheral genes, and super-connectors that link the biological domains (Il6, Il1ß, Cd4, Cd44, Stat1, Traf6, Rela, Cadm1, Nr3c1, Prkcd, Vwf, Erbb2). In conclusion, this novel bioinformatics approach will be a powerful strategy for clinical and across species data analysis that allows for the validation of experimental models and might lead to the discovery of novel mechanistic insights in asthma.
Journal of Clinical Investigation | 2017
Donatella De Feo; Arianna Merlini; Elena Brambilla; Linda Ottoboni; Cecilia Laterza; Ramesh Menon; Sundararajan Srinivasan; Cinthia Farina; Jose Manuel Garcia Manteiga; Erica Butti; Marco Bacigaluppi; Giancarlo Comi; Melanie Greter; Gianvito Martino
In multiple sclerosis, the pathological interaction between autoreactive Th cells and mononuclear phagocytes in the CNS drives initiation and maintenance of chronic neuroinflammation. Here, we found that intrathecal transplantation of neural stem/precursor cells (NPCs) in mice with experimental autoimmune encephalomyelitis (EAE) impairs the accumulation of inflammatory monocyte-derived cells (MCs) in the CNS, leading to improved clinical outcome. Secretion of IL-23, IL-1, and TNF-&agr;, the cytokines required for terminal differentiation of Th cells, decreased in the CNS of NPC-treated mice, consequently inhibiting the induction of GM-CSF–producing pathogenic Th cells. In vivo and in vitro transcriptome analyses showed that NPC-secreted factors inhibit MC differentiation and activation, favoring the switch toward an antiinflammatory phenotype. Tgfb2–/– NPCs transplanted into EAE mice were ineffective in impairing MC accumulation within the CNS and failed to drive clinical improvement. Moreover, intrathecal delivery of TGF-&bgr;2 during the effector phase of EAE ameliorated disease severity. Taken together, these observations identify TGF-&bgr;2 as the crucial mediator of NPC immunomodulation. This study provides evidence that intrathecally transplanted NPCs interfere with the CNS-restricted inflammation of EAE by reprogramming infiltrating MCs into antiinflammatory myeloid cells via secretion of TGF-&bgr;2.
International Journal of Molecular Sciences | 2016
Laurette Tavel; Francesca Fontana; Jose Manuel Garcia Manteiga; Silvia Mari; Elisabetta Mariani; Enrico Caneva; Roberto Sitia; Francesco Camnasio; Magda Marcatti; Simone Cenci; Giovanna Musco
Multiple myeloma (MM) is a malignancy of plasma cells characterized by multifocal osteolytic bone lesions. Macroscopic and genetic heterogeneity has been documented within MM lesions. Understanding the bases of such heterogeneity may unveil relevant features of MM pathobiology. To this aim, we deployed unbiased 1H high-resolution magic-angle spinning (HR-MAS) nuclear magnetic resonance (NMR) metabolomics to analyze multiple biopsy specimens of osteolytic lesions from one case of pathological fracture caused by MM. Multivariate analyses on normalized metabolite peak integrals allowed clusterization of samples in accordance with a posteriori histological findings. We investigated the relationship between morphological and NMR features by merging morphological data and metabolite profiling into a single correlation matrix. Data-merging addressed tissue heterogeneity, and greatly facilitated the mapping of lesions and nearby healthy tissues. Our proof-of-principle study reveals integrated metabolomics and histomorphology as a promising approach for the targeted study of osteolytic lesions.
Molecular Therapy | 2015
Silvia Nucera; Francesco Boccalatte; Andrea Calabria; Tiziana Plati; Cristiana Fanciullo; Jose Manuel Garcia Manteiga; Fabrizio Benedicenti; Fabio Ciceri; Maurilio Ponzoni; Eugenio Montini; Luigi Naldini; Bernhard Gentner
MicroRNAs are essential regulators of normal and malignant hematopoiesis. miRNAs are relevant for gene therapy, since they can be exploited to fine-tune the expression profile of vector constructs or to alter viral tropism (GentnerN Chiriaco et al, 2014; Escobar et al, 2014) and described the function of miR-126 in HSC where it regulates the balance between quiescence and self-renewal (Lechman et al, 2012). We here report a novel role for miR-126 in the induction and maintenance of high-grade B cell malignancies. By ectopically expressing miR-126 in transplanted BM cells, we observed that up to 60% of mice (n=71) developed B cell malignancies. LV insertion site (IS) analysis revealed that all tumors were monoclonal. We then tracked back leukemic clone to different hematopoietic lineages prospectively purified from the mice 2-6 months before disease onset. IS sharing between normal lineages and leukemic clone suggests stem or multipotent progenitor cell as origin for most tumors. Importantly, we show that miR-126 is the direct cause of genesis and maintenance of leukemia, since leukemogenesis is abolished when miRNA expression is inhibited by doxycycline (doxy) using a tetracycline-repressible miR-126 cassette, and established symptomatic leukemia completely regresses when miR-126 is switched off by doxy through induction of apoptosis. Transcriptional profiling indicated that miR-126 regulates multiple genes in p53 pathway both in murine blasts and in normal human CD34+ cells. Previous work suggested expression of miR-126 in acute lymphoblastic leukemia (ALL) and germinal center lymphoma. To further establish the relevance of miR-126 in human disease, we measured miR-126 expression in blasts from 16 adult patients with ALL. miR-126 was highly expressed in most studied ALL cases (Phil+: n=11, Phil-: n=5), at similar levels as CD34+ cells. We then down-regulated miR-126 in primary blasts from human B-ALL patients (n=5), and we observed increased apoptosis and impaired engraftment in xenograft models after primary and secondary transplantation (miR-126/KD: n=32 mice; Ctrl: n=37 mice), demonstrating the relevance of miR-126 in human B-ALL. In conclusion, we present a novel spontaneous mouse model for high grade B cell malignancies which are addicted to miR-126 expression, provide insight into the dynamic process of leukemogenesis by clonal IS tracking and unveil key tumor signaling pathways controlled by miR-126. Down-regulation of miR-126 could be exploited as therapeutic strategy in ALL, since it would deplete leukemic cells while expanding normal HSC, two ways to restore normal hematopoieis.
Archive | 2013
Simone Cenci; Francesca Fontana; Jose Manuel Garcia Manteiga
Cancer Research | 2017
Alessandra Romano; Floriana Cremasco; Antonella Chiechi; Francesca Paradiso; Enrico Milan; Francesca Arcelli Fontana; Jose Manuel Garcia Manteiga; Francesco Di Raimondo; Alexander I. Spira; Amy Van Meter; Emanuel Petricoin; Virginia Espina; Lance A. Liotta; Simone Cenci
Blood | 2016
Alessandra Romano; Jose Manuel Garcia Manteiga; Vittorio Simeon; Nunziatina Parrinello; Cesarina Giallongo; Piera La Cava; Concetta Conticello; Daniele Tibullo; Francesca Arcelli Fontana; Fabio Ciceri; Floriana Cremasco; Monica Fabbri; Pellegrino Musto; Simone Cenci; Francesco Di Raimondo