Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Manuel Martínez-Rivas is active.

Publication


Featured researches published by José Manuel Martínez-Rivas.


Applied and Environmental Microbiology | 2007

Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress

Sonia Rodríguez-Vargas; Alicia Sánchez-García; José Manuel Martínez-Rivas; José Antonio Fernández Prieto; Francisca Randez-Gil

ABSTRACT Unsaturated fatty acids play an essential role in the biophysical characteristics of cell membranes and determine the proper function of membrane-attached proteins. Thus, the ability of cells to alter the degree of unsaturation in their membranes is an important factor in cellular acclimatization to environmental conditions. Many eukaryotic organisms can synthesize dienoic fatty acids, but Saccharomyces cerevisiae can introduce only a single double bond at the Δ9 position. We expressed two sunflower (Helianthus annuus) oleate Δ12 desaturases encoded by FAD2-1 and FAD2-3 in yeast cells of the wild-type W303-1A strain (trp1) and analyzed their effects on growth and stress tolerance. Production of the heterologous desaturases increased the content of dienoic fatty acids, especially 18:2Δ9,12, the unsaturation index, and the fluidity of the yeast membrane. The total fatty acid content remained constant, and the level of monounsaturated fatty acids decreased. Growth at 15°C was reduced in the FAD2 strains, probably due to tryptophan auxotrophy, since the trp1 (TRP1) transformants that produced the sunflower desaturases grew as well as the control strain did. Our results suggest that changes in the fluidity of the lipid bilayer affect tryptophan uptake and/or the correct targeting of tryptophan transporters. The expression of the sunflower desaturases, in either Trp+ or Trp− strains, increased NaCl tolerance. Production of dienoic fatty acids increased the tolerance to freezing of wild-type cells preincubated at 30°C or 15°C. Thus, membrane fluidity is an essential determinant of stress resistance in S. cerevisiae, and engineering of membrane lipids has the potential to be a useful tool of increasing the tolerance to freezing in industrial strains.


Journal of Agricultural and Food Chemistry | 2009

Expression analysis identifies FAD2-2 as the olive oleate desaturase gene mainly responsible for the linoleic acid content in virgin olive oil.

M. L. Hernández; María Nieves Padilla; M. Mancha; José Manuel Martínez-Rivas

The effect of ripening stage and water regimen on oleate desaturase gene expression levels in the fruit of different olive ( Olea europaea L.) varieties was investigated to elucidate the contribution of each to the linoleic acid content in virgin olive oil. To this end, fatty acid analysis and quantitative real time PCR were performed using distinct olive tissues and different developmental stages from the Picual and Arbequina cultivars. The results showed that the olive FAD2-1, FAD2-2, and FAD6 genes were spatial and temporally regulated. In addition, the data indicated that FAD2-2 seems to be the main gene responsible for the linoleic acid content in the olive fruit mesocarp tissue. This conclusion was also confirmed when the study was extended to Hojiblanca, Picudo, and Manzanilla varieties. With regard to the water regimen, unlike the Picual cultivar, a small increase of linoleic acid was observed in the Arbequina variety cultivated with irrigation, which correlated well with the increase detected for the FAD2-2 gene expression level. All of these data strongly suggest that FAD2-2 is the main gene that determines the linoleic acid content in the virgin olive oil.


Phytochemistry | 2011

Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit.

M. Luisa Hernández; María Nieves Padilla; M. Dolores Sicardo; Manuel Mancha; José Manuel Martínez-Rivas

The regulation of microsomal and plastidial oleate desaturases by low and high temperature, darkness, and wounding was investigated. To this end, their gene expression levels and the fatty acid composition was determined in the mesocarp tissue of olive fruit from the Picual and Arbequina varieties subjected to the corresponding stress treatments. Firstly, a plastidial oleate desaturase from olive was cloned and its functional identity was confirmed by overexpression in Escherichia coli. The results showed that temperature and light regulate olive oleate desaturase genes at transcriptional level. However, no correlation between their expression levels and the linoleic acid content in microsomal and plastidial lipids was found. In addition, the involvement of microsomal but not plastidial oleate desaturases in the wounding response of olive fruit mesocarp is demonstrated. The fatty acid analysis revealed the appearance of palmitolinoleic acid only in microsomal lipids, reaching a maximum 3h after wounding.


Journal of Experimental Botany | 2008

The utilization and desaturation of oleate and linoleate during glycerolipid biosynthesis in olive (Olea europaea L.) callus cultures

M. Luisa Hernández; Irina A. Guschina; José Manuel Martínez-Rivas; Manuel Mancha; John L. Harwood

Callus cultures from olive (Olea europaea L.) were used to study characteristics of desaturation in this oil-rich tissue. The incorporation of [1-14C]oleate and [1-14C]linoleate into complex lipids and their further desaturation was followed in incubations of up to 48 h. Both radiolabelled fatty acids were rapidly incorporated into lipids, especially phosphatidylcholine and triacylglycerol. Radiolabelling of these two lipids peaked after 1–4 h, after which it fell. In contrast, other phosphoglycerides and the galactosylglycerides were labelled in a more sustained manner. [1-14C]Linoleate was almost exclusively found in the galactolipids. With [1-14C]linoleate as a precursor, the only significant desaturation to linolenate was in the galactolipids. Monogalactosyldiacylglycerol was the first lipid in which [1-14C]linoleate and [1-14C]linolenate appeared after incubation of the calli with [1-14C]oleate and [1-14C]linoleate, respectively. The presence of radioactivity in the plastidial lipids shows that both [1-14C]oleate and [1-14C]linoleate can freely enter the chloroplast. Two important environmental effects were also examined. Raised incubation temperatures (30–35 °C) reduced oleate desaturation and this was also reflected in the endogenous fatty acid composition. Low light also caused less oleate desaturation. The data indicate that lysophosphatidylcholine acyltransferase is important for the entry of oleate and linoleate into olive callus lipid metabolism and phospholipid:diacylglycerol acyltransferase may be involved in triacylglycerol biosynthesis. In addition, it is shown that plastid desaturases are mainly responsible for the production of polyunsaturated fatty acids. Individual fatty acid desaturases were differently susceptible to environmental stresses with FAD2 being reduced by both high temperature and low light, whereas FAD7 was only affected by high temperature.


Journal of Experimental Botany | 2012

Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean

Ángela Román; Vanesa Andreu; María Luisa Hernández; Beatriz Lagunas; Rafael Picorel; José Manuel Martínez-Rivas; Miguel Alfonso

This study analysed the contribution of each omega-3 desaturase to the cold response in soybean. Exposure to cold temperatures (5 °C) did not result in great modifications of the linolenic acid content in leaf membrane lipids. However, an increase in the GmFAD3A transcripts was observed both in plant leaves and soybean cells whereas no changes in GmFAD3B or GmFAD3C expression levels were detected. This increase was reversible and accompanied by the accumulation of an mRNA encoding a truncated form of GmFAD3A (GmFAD3A-T), which originated from alternative splicing of GmFAD3A in response to cold. When the expression of plastidial omega-3 desaturases was analysed, a transient accumulation of GmFAD7-2 mRNA was detected upon cold exposure in mature soybean trifoliate leaves while GmFAD7-1 transcripts remained unchanged. No modification of the GmFAD8-1 and GmFAD8-2 transcripts was observed. The functionality of GmFAD3A, GmFAD3B, GmFAD3C and GmFAD3A-T was examined by heterologous expression in yeast. No activity was detected with GmFAD3A-T, consistent with the absence of one of the His boxes necessary for desaturase activity. The linolenic acid content of Sacharomyces cerevisiae cells overexpressing GmFAD3A or GmFAD3B was higher when the cultures were incubated at cooler temperatures, suggesting that reticular desaturases of the GmFAD3 family, and more specifically GmFAD3A, may play a role in the cold response, even in leaves. The data point to a regulatory mechanism of omega-3 fatty acid desaturases in soybean affecting specific isoforms in both the plastid and the endoplasmic reticulum to maintain appropriate levels of linolenic acid under low temperature conditions.


Journal of Agricultural and Food Chemistry | 2009

Functional characterization of two 13-lipoxygenase genes from olive fruit in relation to the biosynthesis of volatile compounds of virgin olive oil

María Nieves Padilla; M. Luisa Hernández; Carlos Sanz; José Manuel Martínez-Rivas

Two LOX cDNA clones, Oep1LOX2 and Oep2LOX2, have been isolated from olive ( Olea europaea cv. Picual). Both deduced amino acid sequences showed significant similarity to known plant LOX2, and they contain an N-terminal chloroplastic transit peptide. Genomic Southern blot analyses suggest that at least three copies of Oep1LOX2 and one copy of Oep2LOX2 should be present in the olive genome. Linolenic acid proved to be the preferred substrate for both olive recombinant LOXs, and analyses of reaction products revealed that both enzymes produce primarily 13-hydroperoxides from linoleic and linolenic acids. Expression levels of both genes were measured in the mesocarp and seeds during development and ripening of Picual and Arbequina olive fruit along with the level of volatile compounds in the corresponding virgin olive oils. Biochemical and gene expression data suggest a major involvement of the Oep2LOX2 gene in the biosynthesis of virgin olive oil aroma compounds.


Journal of Agricultural and Food Chemistry | 2010

Isolation, expression, and characterization of a 13-hydroperoxide lyase gene from olive fruit related to the biosynthesis of the main virgin olive oil aroma compounds.

María Nieves Padilla; M. L. Hernández; Ana G. Pérez; Carlos Sanz; José Manuel Martínez-Rivas

A full-length cDNA clone (OepHPL) coding for hydroperoxide lyase was isolated from olive fruit ( Olea europaea cv. Picual). The deduced amino acid sequence shows significant similarity to known plant hydroperoxide lyases and contains a N-terminal sequence that displays structural features of a chloroplast transit peptide. Genomic Southern blot analysis indicates that at least one copy of OepHPL is present in the olive genome. The recombinant hydroperoxide lyase was specific for 13-hydroperoxide derivatives of linolenic and linoleic acids but did not use 9-hydroperoxy isomers as substrates. Analyses of reaction products revealed that this enzyme produces primarily (Z)-hex-3-enal, which partially isomerizes to (E)-hex-2-enal, from 13-hydroperoxylinolenic acid and hexanal from 13-hydroperoxylinoleic acid. Expression levels were measured in different tissues of Picual and Arbequina varieties, including mesocarp and seed during development and ripening of olive fruits. The involvement of this olive hydroperoxide lyase gene in the biosynthesis of virgin olive oil aroma compounds is discussed.


Plant Physiology | 2014

Virus-Induced Alterations in Primary Metabolism Modulate Susceptibility to Tobacco rattle virus in Arabidopsis

Lourdes Fernández-Calvino; Sonia Osorio; M. Luisa Hernández; Ignacio B. Hamada; Francisco J. del Toro; Livia Donaire; Agnés Yu; Regla Bustos; Alisdair R. Fernie; José Manuel Martínez-Rivas; César Llave

Virus infection interferes with primary metabolism by reprogramming gene expression and metabolite content. During compatible virus infections, plants respond by reprogramming gene expression and metabolite content. While gene expression studies are profuse, our knowledge of the metabolic changes that occur in the presence of the virus is limited. Here, we combine gene expression and metabolite profiling in Arabidopsis (Arabidopsis thaliana) infected with Tobacco rattle virus (TRV) in order to investigate the influence of primary metabolism on virus infection. Our results revealed that primary metabolism is reconfigured in many ways during TRV infection, as reflected by significant changes in the levels of sugars and amino acids. Multivariate data analysis revealed that these alterations were particularly conspicuous at the time points of maximal accumulation of TRV, although infection time was the dominant source of variance during the process. Furthermore, TRV caused changes in lipid and fatty acid composition in infected leaves. We found that several Arabidopsis mutants deficient in branched-chain amino acid catabolism or fatty acid metabolism possessed altered susceptibility to TRV. Finally, we showed that increments in the putrescine content in TRV-infected plants correlated with enhanced tolerance to freezing stress in TRV-infected plants and that impairment of putrescine biosynthesis promoted virus multiplication. Our results thus provide an interesting overview for a better understanding of the relationship between primary metabolism and virus infection.


Plant and Cell Physiology | 2016

Differential Contribution of Endoplasmic Reticulum and Chloroplast ω-3 Fatty Acid Desaturase Genes to the Linolenic Acid Content of Olive (Olea europaea) Fruit

M. Luisa Hernández; M. Dolores Sicardo; José Manuel Martínez-Rivas

Linolenic acid is a polyunsaturated fatty acid present in plant lipids, which plays key roles in plant metabolism as a structural component of storage and membrane lipids, and as a precursor of signaling molecules. The synthesis of linolenic acid is catalyzed by two different ω-3 fatty acid desaturases, which correspond to microsomal- (FAD3) and chloroplast- (FAD7 and FAD8) localized enzymes. We have investigated the specific contribution of each enzyme to the linolenic acid content in olive fruit. With that aim, we isolated two different cDNA clones encoding two ω-3 fatty acid desaturases from olive (Olea europaea cv. Picual). Sequence analysis indicates that they code for microsomal (OepFAD3B) and chloroplast (OepFAD7-2) ω-3 fatty acid desaturase enzymes, different from the previously characterized OekFAD3A and OekFAD7-1 genes. Functional expression in yeast of the corresponding OepFAD3A and OepFAD3B cDNAs confirmed that they encode microsomal ω-3 fatty acid desaturases. The linolenic acid content and transcript levels of olive FAD3 and FAD7 genes were measured in different tissues of Picual and Arbequina cultivars, including mesocarp and seed during development and ripening of olive fruit. Gene expression and lipid analysis indicate that FAD3A is the gene mainly responsible for the linolenic acid present in the seed, while FAD7-1 and FAD7-2 contribute mostly to the linolenic acid present in the mesocarp and, therefore, in the olive oil. These results also indicate the relevance of lipid trafficking between the endoplasmic reticulum and chloroplast in determining the linolenic acid content of membrane and storage lipids in oil-accumulating photosynthetic tissues.


Phytochemistry | 2012

Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive

María Nieves Padilla; M. Luisa Hernández; Carlos Sanz; José Manuel Martínez-Rivas

A lipoxygenase (LOX) cDNA clone (Oep2LOX1) has been isolated from olive fruit (Olea europaea cv. Picual). The deduced amino acid sequence displayed significant similarity to known plant LOX1 sequences. Genomic Southern blot analysis suggests that only one copy of Oep2LOX1 is present in the olive genome. Linolenic acid was the preferred substrate for the recombinant Oep2LOX1, which produced almost exclusively 9-hydroperoxide when linolenic acid was used as substrate, whereas a mixture of 9- and 13-hydroperoxides in a ratio 4:1 was formed from linoleic acid. Expression levels were measured in different tissues of Picual and Arbequina cultivars, including the mesocarp and seed during development and ripening of olive fruit. The results showed that Oep2LOX1 transcript level is spatially and temporally regulated. Besides, the transcriptional regulation of the Oep2LOX1 gene in response to different abiotic stresses was also investigated. Temperature, light and wounding regulate Oep2LOX1 gene expression in olive fruit mesocarp. The physiological role of the Oep2LOX1 gene during olive fruit ripening and in the stress response is discussed.

Collaboration


Dive into the José Manuel Martínez-Rivas's collaboration.

Top Co-Authors

Avatar

M. Luisa Hernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuel Mancha

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Nieves Padilla

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M. Dolores Sicardo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María Luisa Hernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Alicia Sánchez-García

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Sanz

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Ana G. Pérez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Beatriz Lagunas

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Francisca Randez-Gil

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge