Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where José Manuel Otero is active.

Publication


Featured researches published by José Manuel Otero.


Biotechnology and Bioengineering | 2010

Industrial Systems Biology

José Manuel Otero; Jens Nielsen

The chemical industry is currently undergoing a dramatic change driven by demand for developing more sustainable processes for the production of fuels, chemicals, and materials. In biotechnological processes different microorganisms can be exploited, and the large diversity of metabolic reactions represents a rich repository for the design of chemical conversion processes that lead to efficient production of desirable products. However, often microorganisms that produce a desirable product, either naturally or because they have been engineered through insertion of heterologous pathways, have low yields and productivities, and in order to establish an economically viable process it is necessary to improve the performance of the microorganism. Here metabolic engineering is the enabling technology. Through metabolic engineering the metabolic landscape of the microorganism is engineered such that there is an efficient conversion of the raw material, typically glucose, to the product of interest. This process may involve both insertion of new enzymes activities, deletion of existing enzyme activities, but often also deregulation of existing regulatory structures operating in the cell. In order to rapidly identify the optimal metabolic engineering strategy the industry is to an increasing extent looking into the use of tools from systems biology. This involves both x-ome technologies such as transcriptome, proteome, metabolome, and fluxome analysis, and advanced mathematical modeling tools such as genome-scale metabolic modeling. Here we look into the history of these different techniques and review how they find application in industrial biotechnology, which will lead to what we here define as industrial systems biology.


PLOS ONE | 2013

Industrial Systems Biology of Saccharomyces cerevisiae Enables Novel Succinic Acid Cell Factory

José Manuel Otero; Donatella Cimini; Kiran Raosaheb Patil; Simon Guldberg Poulsen; Lisbeth Olsson; Jens Nielsen

Saccharomyces cerevisiae is the most well characterized eukaryote, the preferred microbial cell factory for the largest industrial biotechnology product (bioethanol), and a robust commerically compatible scaffold to be exploitted for diverse chemical production. Succinic acid is a highly sought after added-value chemical for which there is no native pre-disposition for production and accmulation in S. cerevisiae. The genome-scale metabolic network reconstruction of S. cerevisiae enabled in silico gene deletion predictions using an evolutionary programming method to couple biomass and succinate production. Glycine and serine, both essential amino acids required for biomass formation, are formed from both glycolytic and TCA cycle intermediates. Succinate formation results from the isocitrate lyase catalyzed conversion of isocitrate, and from the α-keto-glutarate dehydrogenase catalyzed conversion of α-keto-glutarate. Succinate is subsequently depleted by the succinate dehydrogenase complex. The metabolic engineering strategy identified included deletion of the primary succinate consuming reaction, Sdh3p, and interruption of glycolysis derived serine by deletion of 3-phosphoglycerate dehydrogenase, Ser3p/Ser33p. Pursuing these targets, a multi-gene deletion strain was constructed, and directed evolution with selection used to identify a succinate producing mutant. Physiological characterization coupled with integrated data analysis of transcriptome data in the metabolically engineered strain were used to identify 2nd-round metabolic engineering targets. The resulting strain represents a 30-fold improvement in succinate titer, and a 43-fold improvement in succinate yield on biomass, with only a 2.8-fold decrease in the specific growth rate compared to the reference strain. Intuitive genetic targets for either over-expression or interruption of succinate producing or consuming pathways, respectively, do not lead to increased succinate. Rather, we demonstrate how systems biology tools coupled with directed evolution and selection allows non-intuitive, rapid and substantial re-direction of carbon fluxes in S. cerevisiae, and hence show proof of concept that this is a potentially attractive cell factory for over-producing different platform chemicals.


Advances in Biochemical Engineering \/ Biotechnology | 2007

Fueling Industrial Biotechnology Growth with Bioethanol

José Manuel Otero; Gianni Panagiotou; Lisbeth Olsson

Industrial biotechnology is the conversion of biomass via biocatalysis, microbial fermentation, or cell culture to produce chemicals, materials, and/or energy. Industrial biotechnology processes aim to be cost-competitive, environmentally favorable, and self-sustaining compared to their petrochemical equivalents. Common to all processes for the production of energy, commodity, added value, or fine chemicals is that raw materials comprise the most significant cost fraction, particularly as operating efficiencies increase through practice and improving technologies. Today, crude petroleum represents the dominant raw material for the energy and chemical sectors worldwide. Within the last 5 years petroleum prices, stability, and supply have increased, decreased, and been threatened, respectively, driving a renewed interest across academic, government, and corporate centers to utilize biomass as an alternative raw material. Specifically, bio-based ethanol as an alternative biofuel has emerged as the single largest biotechnology commodity, with close to 46 billion L produced worldwide in 2005. Bioethanol is a leading example of how systems biology tools have significantly enhanced metabolic engineering, inverse metabolic engineering, and protein and enzyme engineering strategies. This enhancement stems from method development for measurement, analysis, and data integration of functional genomics, including the transcriptome, proteome, metabolome, and fluxome. This review will show that future industrial biotechnology process development will benefit tremendously from the precedent set by bioethanol - that enabling technologies (e.g., systems biology tools) coupled with favorable economic and socio-political driving forces do yield profitable, sustainable, and environmentally responsible processes. Biofuel will continue to be the keystone of any industrial biotechnology-based economy whereby biorefineries leverage common raw materials and unit operations to integrate diverse processes to produce demand-driven product portfolios.


Biotechnology and Bioengineering | 2010

Novel micro-bioreactor high throughput technology for cell culture process development: Reproducibility and scalability assessment of fed-batch CHO cultures.

Ashraf Amanullah; José Manuel Otero; Mark Mikola; Amy Hsu; Jinyou Zhang; John G. Aunins; H. Brett Schreyer; James Hope; A. Peter Russo

With increasing timeline pressures to get therapeutic and vaccine candidates into the clinic, resource intensive approaches such as the use of shake flasks and bench‐top bioreactors may limit the design space for experimentation to yield highly productive processes. The need to conduct large numbers of experiments has resulted in the use of miniaturized high‐throughput (HT) technology for process development. One such high‐throughput system is the SimCell™ platform, a robotically driven, cell culture bioreactor system developed by BioProcessors Corp. This study describes the use of the SimCell™ micro‐bioreactor technology for fed‐batch cultivation of a GS‐CHO transfectant expressing a model IgG4 monoclonal antibody. Cultivations were conducted in gas‐permeable chambers based on a micro‐fluidic design, with six micro‐bioreactors (MBs) per micro‐bioreactor array (MBA). Online, non‐invasive measurement of total cell density, pH and dissolved oxygen (DO) was performed. One hundred fourteen parallel MBs (19 MBAs) were employed to examine process reproducibility and scalability at shake flask, 3‐ and 100‐L bioreactor scales. The results of the study demonstrate that the SimCell™ platform operated under fed‐batch conditions could support viable cell concentrations up to least 12 × 106 cells/mL. In addition, both intra‐MB (MB to MB) as well as intra‐MBA (MBA to MBA) culture performance was found to be highly reproducible. The intra‐MB and ‐MBA variability was calculated for each measurement as the coefficient of variation defined as CV (%) = (standard deviation/mean) × 100. The % CV values for most intra‐MB and intra‐MBA measurements were generally under 10% and the intra‐MBA values were slightly lower than those for intra‐MB. Cell growth, process parameters, metabolic and protein titer profiles were also compared to those from shake flask, bench‐top, and pilot scale bioreactor cultivations and found to be within ±20% of the historical averages. Biotechnol. Bioeng. 2010; 106: 57–67.


BMC Genomics | 2010

Whole genome sequencing of Saccharomyces cerevisiae: from genotype to phenotype for improved metabolic engineering applications

José Manuel Otero; Wanwipa Vongsangnak; Mohammad A. Asadollahi; Roberto Olivares-Hernandes; Jerome Maury; Laurent Farinelli; Loïc Barlocher; Magne Østerås; Michel Schalk; Anthony Clark; Jens Nielsen

BackgroundThe need for rapid and efficient microbial cell factory design and construction are possible through the enabling technology, metabolic engineering, which is now being facilitated by systems biology approaches. Metabolic engineering is often complimented by directed evolution, where selective pressure is applied to a partially genetically engineered strain to confer a desirable phenotype. The exact genetic modification or resulting genotype that leads to the improved phenotype is often not identified or understood to enable further metabolic engineering.ResultsIn this work we performed whole genome high-throughput sequencing and annotation can be used to identify single nucleotide polymorphisms (SNPs) between Saccharomyces cerevisiae strains S288c and CEN.PK113-7D. The yeast strain S288c was the first eukaryote sequenced, serving as the reference genome for the Saccharomyces Genome Database, while CEN.PK113-7D is a preferred laboratory strain for industrial biotechnology research. A total of 13,787 high-quality SNPs were detected between both strains (reference strain: S288c). Considering only metabolic genes (782 of 5,596 annotated genes), a total of 219 metabolism specific SNPs are distributed across 158 metabolic genes, with 85 of the SNPs being nonsynonymous (e.g., encoding amino acid modifications). Amongst metabolic SNPs detected, there was pathway enrichment in the galactose uptake pathway (GAL1, GAL10) and ergosterol biosynthetic pathway (ERG8, ERG9). Physiological characterization confirmed a strong deficiency in galactose uptake and metabolism in S288c compared to CEN.PK113-7D, and similarly, ergosterol content in CEN.PK113-7D was significantly higher in both glucose and galactose supplemented cultivations compared to S288c. Furthermore, DNA microarray profiling of S288c and CEN.PK113-7D in both glucose and galactose batch cultures did not provide a clear hypothesis for major phenotypes observed, suggesting that genotype to phenotype correlations are manifested post-transcriptionally or post-translationally either through protein concentration and/or function.ConclusionsWith an intensifying need for microbial cell factories that produce a wide array of target compounds, whole genome high-throughput sequencing and annotation for SNP detection can aid in better reducing and defining the metabolic landscape. This work demonstrates direct correlations between genotype and phenotype that provides clear and high-probability of success metabolic engineering targets. The genome sequence, annotation, and a SNP viewer of CEN.PK113-7D are deposited at http://www.sysbio.se/cenpk.


Fems Yeast Research | 2012

Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption

Gionata Scalcinati; José Manuel Otero; Jennifer R.H. Van Vleet; Thomas W. Jeffries; Lisbeth Olsson; Jens Nielsen

Industrial biotechnology aims to develop robust microbial cell factories, such as Saccharomyces cerevisiae, to produce an array of added value chemicals presently dominated by petrochemical processes. Xylose is the second most abundant monosaccharide after glucose and the most prevalent pentose sugar found in lignocelluloses. Significant research efforts have focused on the metabolic engineering of S. cerevisiae for fast and efficient xylose utilization. This study aims to metabolically engineer S. cerevisiae, such that it can consume xylose as the exclusive substrate while maximizing carbon flux to biomass production. Such a platform may then be enhanced with complementary metabolic engineering strategies that couple biomass production with high value-added chemical. Saccharomyces cerevisiae, expressing xylose reductase, xylitol dehydrogenase and xylulose kinase, from the native xylose-metabolizing yeast Pichia stipitis, was constructed, followed by a directed evolution strategy to improve xylose utilization rates. The resulting S. cerevisiae strain was capable of rapid growth and fast xylose consumption producing only biomass and negligible amount of byproducts. Transcriptional profiling of this strain was employed to further elucidate the observed physiology confirms a strongly up-regulated glyoxylate pathway enabling respiratory metabolism. The resulting strain is a desirable platform for the industrial production of biomass-related products using xylose as a sole carbon source.


PLOS ONE | 2011

Linking genotype and phenotype of Saccharomyces cerevisiae strains reveals metabolic engineering targets and leads to triterpene hyper-producers

Karina Marie Madsen; Gupta D. B. R. K. Udatha; Saori Semba; José Manuel Otero; Peter Koetter; Jens Nielsen; Yutaka Ebizuka; Tetsuo Kushiro; Gianni Panagiotou

Background Metabolic engineering is an attractive approach in order to improve the microbial production of drugs. Triterpenes is a chemically diverse class of compounds and many among them are of interest from a human health perspective. A systematic experimental or computational survey of all feasible gene modifications to determine the genotype yielding the optimal triterpene production phenotype is a laborious and time-consuming process. Methodology/Principal Findings Based on the recent genome-wide sequencing of Saccharomyces cerevisiae CEN.PK 113-7D and its phenotypic differences with the S288C strain, we implemented a strategy for the construction of a β-amyrin production platform. The genes Erg8, Erg9 and HFA1 contained non-silent SNPs that were computationally analyzed to evaluate the changes that cause in the respective protein structures. Subsequently, Erg8, Erg9 and HFA1 were correlated with the increased levels of ergosterol and fatty acids in CEN.PK 113-7D and single, double, and triple gene over-expression strains were constructed. Conclusions The six out of seven gene over-expression constructs had a considerable impact on both ergosterol and β-amyrin production. In the case of β-amyrin formation the triple over-expression construct exhibited a nearly 500% increase over the control strain making our metabolic engineering strategy the most successful design of triterpene microbial producers.


PLOS ONE | 2010

Yeast Biological Networks Unfold the Interplay of Antioxidants, Genome and Phenotype, and Reveal a Novel Regulator of the Oxidative Stress Response

José Manuel Otero; Manos A. Papadakis; D.B.R.K. Gupta Udatha; Jens Nielsen; Gianni Panagiotou

Background Identifying causative biological networks associated with relevant phenotypes is essential in the field of systems biology. We used ferulic acid (FA) as a model antioxidant to characterize the global expression programs triggered by this small molecule and decipher the transcriptional network controlling the phenotypic adaptation of the yeast Saccharomyces cerevisiae. Methodology/Principal Findings By employing a strict cut off value during gene expression data analysis, 106 genes were found to be involved in the cell response to FA, independent of aerobic or anaerobic conditions. Network analysis of the system guided us to a key target node, the FMP43 protein, that when deleted resulted in marked acceleration of cellular growth (∼15% in both minimal and rich media). To extend our findings to human cells and identify proteins that could serve as drug targets, we replaced the yeast FMP43 protein with its human ortholog BRP44 in the genetic background of the yeast strain Δfmp43. The conservation of the two proteins was phenotypically evident, with BRP44 restoring the normal specific growth rate of the wild type. We also applied homology modeling to predict the 3D structure of the FMP43 and BRP44 proteins. The binding sites in the homology models of FMP43 and BRP44 were computationally predicted, and further docking studies were performed using FA as the ligand. The docking studies demonstrated the affinity of FA towards both FMP43 and BRP44. Conclusions This study proposes a hypothesis on the mechanisms yeast employs to respond to antioxidant molecules, while demonstrating how phenome and metabolome yeast data can serve as biomarkers for nutraceutical discovery and development. Additionally, we provide evidence for a putative therapeutic target, revealed by replacing the FMP43 protein with its human ortholog BRP44, a brain protein, and functionally characterizing the relevant mutant strain.


Vaccine | 2014

Implementation of QbD for the development of a vaccine candidate.

Jennifer Haas; Andrew Franklin; Matthew Houser; David Maraldo; Mark Mikola; Roberto Ortiz; Elizabeth Sullivan; José Manuel Otero

This case study provides an example of how Quality by Design (QbD) principles were applied to accelerate process development to manufacture a vaccine candidate at commercial scale. By leveraging an existing manufacturing platform process, a risk assessment was used to differentiate process parameters that could be defined using a combination of scientific and historical manufacturing knowledge from those that merited additional process characterization by experimentation. Select parameters, and their interactions, were evaluated by a Design of Experiment (DoE) series. This systematic approach required less time and fewer resources and resulted in the definition of a reliable and robust manufacturing process that meets regulatory requirements.


Journal of Industrial Microbiology & Biotechnology | 2013

Genome-scale modeling enables metabolic engineering of Saccharomyces cerevisiae for succinic acid production

Rasmus Agren; José Manuel Otero; Jens Nielsen

Collaboration


Dive into the José Manuel Otero's collaboration.

Top Co-Authors

Avatar

Jens Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Lisbeth Olsson

Chalmers University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jens Nielsen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Donatella Cimini

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Kiran Raosaheb Patil

European Bioinformatics Institute

View shared research outputs
Top Co-Authors

Avatar

Gaëlle Lettier

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jerome Maury

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Karina Marie Madsen

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge