José Marcos C. Ribeiro
National Institutes of Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by José Marcos C. Ribeiro.
Annals of the New York Academy of Sciences | 2004
Isabel Kinney Ferreira de Miranda Santos; Jesus G. Valenzuela; José Marcos C. Ribeiro; Marilia De Castro; Juliana Nardelli Costa; Ana Maria Costa; Edson Ramiro Da Silva; Olavo Bilac Rego Neto; Clarisse Rocha; Sirlei Daffre; Beatriz Rossetti Ferreira; João Santana da Silva; Matias Pablo Juan Szabó
Abstract: The quest for new control strategies for ticks can profit from high throughput genomics. In order to identify genes that are involved in oogenesis and development, in defense, and in hematophagy, the transcriptomes of ovaries, hemocytes, and salivary glands from rapidly ingurgitating females, and of salivary glands from males of Boophilus microplus were PCR amplified, and the expressed sequence tags (EST) of random clones were mass sequenced. So far, more than 1,344 EST have been generated for these tissues, with approximately 30% novelty, depending on the the tissue studied. To date approximately 760 nucleotide sequences from B. microplus are deposited in the NCBI database. Mass sequencing of partial cDNAs of parasite genes can build up this scant database and rapidly generate a large quantity of useful information about potential targets for immunobiological or chemical control.
Parasites & Vectors | 2014
Gustavo Rocha Garcia; Luiz Gustavo Gardinassi; José Marcos C. Ribeiro; Elen Anatriello; Beatriz Rossetti Ferreira; Higo Nasser Santanna Moreira; Cláudio Mafra; Maria Marlene Martins; Matias Pablo Juan Szabó; Isabel Kinney Ferreira de Miranda-Santos; Sandra Regina Maruyama
BackgroundTick salivary constituents antagonize inflammatory, immune and hemostatic host responses, favoring tick blood feeding and the establishment of tick-borne pathogens in hosts during hematophagy. Amblyomma triste, A. cajennense and A. parvum ticks are very important in veterinary and human health because they are vectors of the etiological agents for several diseases. Insights into the tick salivary components involved in blood feeding are essential to understanding vector-pathogen-host interactions, and transcriptional profiling of salivary glands is a powerful tool to do so. Here, we functionally annotated the sialotranscriptomes of these three Amblyomma species, which allowed comparisons between these and other hematophagous arthropod species.MethodsmRNA from the salivary glands of A. triste, A. cajennense and A. parvum ticks fed on different host species were pyrosequenced on a 454-Roche platform to generate four A. triste (nymphs fed on guinea pigs and females fed on dogs) libraries, one A. cajennense (females fed on rabbits) library and one was A. parvum (females fed on dogs) library. Bioinformatic analyses used in-house programs with a customized pipeline employing standard assembly and alignment algorithms, protein databases and protein servers.ResultsEach library yielded an average of 100,000 reads, which were assembled to obtain contigs of coding sequences (CDSs). The sialotranscriptome analyses of A. triste, A. cajennense and A. parvum ticks produced 11,240, 4,604 and 3,796 CDSs, respectively. These CDSs were classified into over 100 distinct protein families with a wide range of putative functions involved in physiological and blood feeding processes and were catalogued in annotated, hyperlinked spreadsheets. We highlighted the putative transcripts encoding saliva components with critical roles during parasitism, such as anticoagulants, immunosuppressants and anti-inflammatory molecules. The salivary content underwent changes in the abundance and repertoire of many transcripts, which depended on the tick and host species.ConclusionsThe annotated sialotranscriptomes described herein richly expand the biological knowledge of these three Amblyomma species. These comprehensive databases will be useful for the characterization of salivary proteins and can be applied to control ticks and tick-borne diseases.
FEBS Journal | 2010
Eric Calvo; Fuyuki Tokumasu; Daniella M. Mizurini; Peter McPhie; David L. Narum; José Marcos C. Ribeiro; Robson Q. Monteiro; Ivo M. B. Francischetti
Aegyptin is a 30u2003kDa mosquito salivary gland protein that binds to collagen and inhibits platelet aggregation. We have studied the biophysical properties of aegyptin and its mechanism of action. Light‐scattering plot showed that aegyptin has an elongated monomeric form, which explains the apparent molecular mass of 110u2003kDa estimated by gel‐filtration chromatography. Surface plasmon resonance identified the sequence RGQOGVMGF (where O is hydroxyproline) that mediates collagen interaction with von Willebrand factor (vWF) as a high‐affinity binding site for aegyptin, with a KD of approximately 5u2003nm. Additionally, aegyptin interacts with the linear peptide RGQPGVMGF and heat‐denatured collagen, indicating that the triple helix and hydroxyproline are not a prerequisite for binding. However, aegyptin does not interact with scrambled RGQPGVMGF peptide. Aegyptin also recognizes the peptides (GPO)10 and GFOGER with low affinity (μm range), which respectively represent glycoprotein VI and integrin α2β1 binding sites in collagen. Truncated forms of aegyptin were engineered, and the C‐terminus fragment was shown to interact with collagen and to attenuate platelet aggregation. In addition, aegyptin prevents laser‐induced carotid thrombus formation in the presence of Rose Bengal inu2003vivo, without significant bleeding in rats. In conclusion, aegyptin interacts with distinct binding sites in collagen, and is useful tool to inhibit platelet–collagen interaction inu2003vitro and inu2003vivo.
Insect Biochemistry and Molecular Biology | 2012
José Marcos C. Ribeiro; Marcelo B. Labruna; Ben J. Mans; Sandra Regina Maruyama; Ivo M. B. Francischetti; Gustavo Canavaci Barizon; Isabel Kinney Ferreira de Miranda Santos
The hosts for Antricola delacruzi ticks are insectivorous, cave-dwelling bats on which only larvae are found. The mouthparts of nymphal and adult A.xa0delacruzi are compatible with scavenging feeding because the hypostome is small and toothless. How a single blood meal of a larva provides energy for several molts as well as for oviposition by females is not known. Adults of A.xa0delacruzi possibly feed upon an unknown food source in bat guano, a substrate on which nymphal and adult stages are always found. Guano produced by insectivorous bats contains twice the amount of protein and 60 times the amount of iron as beef. In addition, bacteria and chitin-rich fungi proliferate on guano. Comparative data on the transcriptome of the salivary glands of A.xa0delacruzi is nonexistent and would help to understand the physiological adaptations of salivary glands that accompany different sources of food as well as the steps taken by the Acari toward haematophagy, believed to have evolved from scavenging dead animals. Annotation of the transcriptome of salivary glands from female instars of A.xa0delacruzi collected on guano categorized 5.7% of the clusters of expressed genes as putative secreted proteins. They included abundantly expressed TIL-domain-containing proteins (possible anti-microbials), an abundantly expressed protein similar to a serum amyloid found in the sialotranscriptomes of Ornithodoros spp., a savignygrin, a family of mucin/peritrophin/cuticle-like proteins, anti-microbials and an HIV envelope-like glycoprotein also found in soft ticks. When comparing the transcriptome of A.xa0delacruzi with those of blood-feeding female soft and hard ticks some notable differences were observed; they consisted of the following transcripts over- or under-represented or absent in the sialotranscriptome of A.xa0delacruzi that may reflect its source of food: ferritin, mucins with chitin-binding domains and TIL-domain-containing proteins versus lipocalins, basic tail proteins, metalloproteases, glycine-rich proteins and Kunitz protease inhibitors, respectively.
Experimental Parasitology | 2010
Wanessa A. Carvalho; Sandra Regina Maruyama; Alessandra Mara Franzin; Antônio Roberto Rodrigues Abatepaulo; Jennifer M. Anderson; Beatriz Rossetti Ferreira; José Marcos C. Ribeiro; Daniela D. Moré; Antonio Augusto Mendes Maia; Jesus G. Valenzuela; Gustavo Rocha Garcia; Isabel Kinney Ferreira de Miranda Santos
Ticks deposit saliva at the site of their attachment to a host in order to inhibit haemostasis, inflammation and innate and adaptive immune responses. The anti-haemostatic properties of tick saliva have been described by many studies, but few show that tick infestations or its anti-haemostatic components exert systemic effects in vivo. In the present study, we extended these observations and show that, compared with normal skin, bovine hosts that are genetically susceptible to tick infestations present an increase in the clotting time of blood collected from the immediate vicinity of haemorrhagic feeding pools in skin infested with different developmental stages of Rhipicepahlus microplus; conversely, we determined that clotting time of tick-infested skin from genetically resistant bovines was shorter than that of normal skin. Coagulation and inflammation have many components in common and we determined that in resistant bovines, eosinophils and basophils, which are known to contain tissue factor, are recruited in greater numbers to the inflammatory site of tick bites than in susceptible hosts. Finally, we correlated the observed differences in clotting times with the expression profiles of transcripts for putative anti-haemostatic proteins in different developmental stages of R. microplus fed on genetically susceptible and resistant hosts: we determined that transcripts coding for proteins similar to these molecules are overrepresented in salivary glands from nymphs and males fed on susceptible bovines. Our data indicate that ticks are able to modulate their hosts local haemostatic reactions. In the resistant phenotype, larger amounts of inflammatory cells are recruited and expression of anti-coagulant molecules is decreased tick salivary glands, features that can hamper the ticks blood meal.
BMC Genomics | 2006
Sumudu N Dissanayake; Osvaldo Marinotti; José Marcos C. Ribeiro; Anthony A. James
BackgroundThe completed sequence of the Anopheles gambiae genome has enabled genome-wide analyses of gene expression and regulation in this principal vector of human malaria. These investigations have created a demand for efficient methods of cataloguing and analyzing the large quantities of data that have been produced. The organization of genome-wide data into one unified database makes possible the efficient identification of spatial and temporal patterns of gene expression, and by pairing these findings with comparative algorithms, may offer a tool to gain insight into the molecular mechanisms that regulate these expression patterns.DescriptionWe provide a publicly-accessible database and integrated data-mining tool, angaGEDUCI, that unifies 1) stage- and tissue-specific microarray analyses of gene expression in An. gambiae at different developmental stages and temporal separations following a bloodmeal, 2) functional gene annotation, 3) genomic sequence data, and 4) promoter sequence comparison algorithms. The database can be used to study genes expressed in particular stages, tissues, and patterns of interest, and to identify conserved promoter sequence motifs that may play a role in the regulation of such expression. The database is accessible from the address http://www.angaged.bio.uci.edu.ConclusionBy combining gene expression, function, and sequence data with integrated sequence comparison algorithms, angaGEDUCI streamlines spatial and temporal pattern-finding and produces a straightforward means of developing predictions and designing experiments to assess how gene expression may be controlled at the molecular level.
PLOS ONE | 2012
Felipe Gazos-Lopes; Rafael D. Mesquita; Lívia Silva-Cardoso; Raquel Senna; Alan B. Silveira; Willy Jablonka; Cecília Oliveira Cudischevitch; Alan Brito Carneiro; Ednildo A. Machado; Luize G. Lima; Robson Q. Monteiro; Roberto H. Nussenzveig; Evelize Folly; Alexandre Romeiro; Jorick Vanbeselaere; Lucia Mendonça-Previato; José O. Previato; Jesus G. Valenzuela; José Marcos C. Ribeiro; Georgia C. Atella; Mário A.C. Silva-Neto
Background Rhodnius prolixus is a blood-sucking bug vector of Trypanosoma cruzi and T. rangeli. T. cruzi is transmitted by vector feces deposited close to the wound produced by insect mouthparts, whereas T. rangeli invades salivary glands and is inoculated into the host skin. Bug saliva contains a set of nitric oxide-binding proteins, called nitrophorins, which deliver NO to host vessels and ensure vasodilation and blood feeding. NO is generated by nitric oxide synthases (NOS) present in the epithelium of bug salivary glands. Thus, T. rangeli is in close contact with NO while in the salivary glands. Methodology/Principal Findings Here we show by immunohistochemical, biochemical and molecular techniques that inositolphosphate-containing glycolipids from trypanosomatids downregulate NO synthesis in the salivary glands of R. prolixus. Injecting insects with T. rangeli-derived glycoinositolphospholipids (Tr GIPL) or T. cruzi-derived glycoinositolphospholipids (Tc GIPL) specifically decreased NO production. Salivary gland treatment with Tc GIPL blocks NO production without greatly affecting NOS mRNA levels. NOS protein is virtually absent from either Tr GIPL- or Tc GIPL-treated salivary glands. Evaluation of NO synthesis by using a fluorescent NO probe showed that T. rangeli-infected or Tc GIPL-treated glands do not show extensive labeling. The same effect is readily obtained by treatment of salivary glands with the classical protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SO). This suggests that parasite GIPLs induce the inhibition of a salivary gland PTP. GIPLs specifically suppressed NO production and did not affect other anti-hemostatic properties of saliva, such as the anti-clotting and anti-platelet activities. Conclusions/Significance Taken together, these data suggest that trypanosomatids have overcome NO generation using their surface GIPLs. Therefore, these molecules ensure parasite survival and may ultimately enhance parasite transmission.
Memorias Do Instituto Oswaldo Cruz | 2014
Sandra Regina Maruyama; Luiza Antunes de Castro-Jorge; José Marcos C. Ribeiro; Luiz Gustavo Gardinassi; Gustavo Rocha Garcia; Lucinda G. Brandao; Aline Rezende Rodrigues; Marcos Ituo Okada; Emiliana Pereira Abrão; Beatriz Rossetti Ferreira; Benedito Antônio Lopes da Fonseca; Isabel Kinney Ferreira de Miranda-Santos
Transcripts similar to those that encode the nonstructural (NS) proteins NS3 and NS5 from flaviviruses were found in a salivary gland (SG) complementary DNA (cDNA) library from the cattle tick Rhipicephalus microplus. Tick extracts were cultured with cells to enable the isolation of viruses capable of replicating in cultured invertebrate and vertebrate cells. Deep sequencing of the viral RNA isolated from culture supernatants provided the complete coding sequences for the NS3 and NS5 proteins and their molecular characterisation confirmed similarity with the NS3 and NS5 sequences from other flaviviruses. Despite this similarity, phylogenetic analyses revealed that this potentially novel virus may be a highly divergent member of the genus Flavivirus. Interestingly, we detected the divergent NS3 and NS5 sequences in ticks collected from several dairy farms widely distributed throughout three regions of Brazil. This is the first report of flavivirus-like transcripts in R. microplus ticks. This novel virus is a potential arbovirus because it replicated in arthropod and mammalian cells; furthermore, it was detected in a cDNA library from tick SGs and therefore may be present in tick saliva. It is important to determine whether and by what means this potential virus is transmissible and to monitor the virus as a potential emerging tick-borne zoonotic pathogen.
International Immunopharmacology | 2012
Renata Grespan; Henrique Lemos; Vanessa Carregaro; Waldiceu A. Verri; Fabricio O. Souto; Carlo José Freire Oliveira; Clarissa Teixeira; José Marcos C. Ribeiro; Jesus G. Valenzuela; Fernando Q. Cunha
Several studies have pointed out the immunomodulatory properties of the Salivary Gland Extract (SGE) from Lutzomyia longipalpis. We aimed to identify the SGE component (s) responsible for its effect on ovalbumin (OVA)-induced neutrophil migration (NM) and to evaluate the effect of SGE and components in the antigen-induced arthritis (AIA) model. We tested the anti-arthritic activities of SGE and the recombinant LJM111 salivary protein (rLJM111) by measuring the mechanical hypernociception and the NM into synovial cavity. Furthermore, we measured IL-17, TNF-α and IFN-γ released by lymph nodes cells stimulated with mBSA or anti-CD3 using enzyme-linked immunosorbent assay (ELISA). Additionally, we tested the effect of SGE and rLJM111 on co-stimulatory molecules expression (MHC-II and CD-86) by flow cytometry, TNF-α and IL-10 production (ELISA) of bone marrow-derived dendritic cells (BMDCs) stimulated with LPS, chemotaxis and actin polymerization from neutrophils. Besides, the effect of SGE on CXCR2 and GRK-2 expression on neutrophils was investigated. We identified one plasmid expressing the protein LJM111 that prevented NM in OVA-challenged immunized mice. Furthermore, both SGE and rLJM111 inhibited NM and pain sensitivity in AIA and reduced IL-17, TNF-α and IFN-γ. SGE and rLJM111 also reduced MHC-II and CD-86 expression and TNF-α whereas increased IL-10 release by LPS-stimulated BMDCs. SGE, but not LJM 111, inhibited neutrophils chemotaxis and actin polymerization. Additionally, SGE reduced neutrophil CXCR2 expression and increased GRK-2. Thus, rLJM111 is partially responsible for SGE mechanisms by diminishing DC function and maturation but not chemoattraction of neutrophils.
Parasites & Vectors | 2017
Alessandra Mara Franzin; Sandra Regina Maruyama; Gustavo Rocha Garcia; Rosane Pereira Oliveira; José Marcos C. Ribeiro; Richard Bishop; Antonio Augusto Mendes Maia; Daniela Dantas Moré; Beatriz Rossetti Ferreira; Isabel Kinney Ferreira de Miranda Santos
BackgroundTicks attach to and penetrate their hosts’ skin and inactivate multiple components of host responses in order to acquire a blood meal. Infestation loads with the cattle tick, Rhipicephalus microplus, are heritable: some breeds carry high loads of reproductively successful ticks, whereas in others, few ticks feed and reproduce efficiently.MethodsIn order to elucidate the mechanisms that result in the different outcomes of infestations with cattle ticks, we examined global gene expression and inflammation induced by tick bites in skins from one resistant and one susceptible breed of cattle that underwent primary infestations with larvae and nymphs of R. microplus. We also examined the expression profiles of genes encoding secreted tick proteins that mediate parasitism in larvae and nymphs feeding on these breeds.ResultsFunctional analyses of differentially expressed genes in the skin suggest that allergic contact-like dermatitis develops with ensuing production of IL-6, CXCL-8 and CCL-2 and is sustained by HMGB1, ISG15 and PKR, leading to expression of pro-inflammatory chemokines and cytokines that recruit granulocytes and T lymphocytes. Importantly, this response is delayed in susceptible hosts. Histopathological analyses of infested skins showed inflammatory reactions surrounding tick cement cones that enable attachment in both breeds, but in genetically tick-resistant bovines they destabilized the cone. The transcription data provided insights into tick-mediated activation of basophils, which have previously been shown to be a key to host resistance in model systems. Skin from tick-susceptible bovines expressed more transcripts encoding enzymes that detoxify tissues. Interestingly, these enzymes also produce volatile odoriferous compounds and, accordingly, skin rubbings from tick-susceptible bovines attracted significantly more tick larvae than rubbings from resistant hosts. Moreover, transcripts encoding secreted modulatory molecules by the tick were significantly more abundant in larval and in nymphal salivary glands from ticks feeding on susceptible bovines.ConclusionsCompared with tick-susceptible hosts, genes encoding enzymes producing volatile compounds exhibit significantly lower expression in resistant hosts, which may render them less attractive to larvae; resistant hosts expose ticks to an earlier inflammatory response, which in ticks is associated with significantly lower expression of genes encoding salivary proteins that suppress host immunity, inflammation and coagulation.